--- library_name: transformers license: apache-2.0 base_model: Alibaba-NLP/gte-large-en-v1.5 tags: - generated_from_trainer metrics: - f1 model-index: - name: gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-71 results: [] --- # gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-71 This model is a fine-tuned version of [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1854 - F1: 0.9373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.4424 | 0.2527 | 100 | 0.2132 | 0.9171 | | 0.196 | 0.5054 | 200 | 0.1630 | 0.9390 | | 0.157 | 0.7581 | 300 | 0.1354 | 0.9455 | | 0.1504 | 1.0107 | 400 | 0.1332 | 0.9526 | | 0.1062 | 1.2634 | 500 | 0.1283 | 0.9530 | | 0.1089 | 1.5161 | 600 | 0.1226 | 0.9571 | | 0.1171 | 1.7688 | 700 | 0.1329 | 0.9537 | | 0.1136 | 2.0215 | 800 | 0.1429 | 0.9550 | | 0.0799 | 2.2742 | 900 | 0.1543 | 0.9501 | | 0.0929 | 2.5268 | 1000 | 0.1456 | 0.9488 | | 0.0915 | 2.7795 | 1100 | 0.1518 | 0.9499 | | 0.1065 | 3.0322 | 1200 | 0.1714 | 0.9471 | | 0.067 | 3.2849 | 1300 | 0.1334 | 0.9582 | | 0.0702 | 3.5376 | 1400 | 0.1472 | 0.9508 | | 0.0714 | 3.7903 | 1500 | 0.1852 | 0.9495 | | 0.0698 | 4.0430 | 1600 | 0.2459 | 0.9453 | | 0.0518 | 4.2956 | 1700 | 0.2273 | 0.9477 | | 0.0565 | 4.5483 | 1800 | 0.1717 | 0.9527 | | 0.0543 | 4.8010 | 1900 | 0.1749 | 0.9538 | | 0.0516 | 5.0537 | 2000 | 0.1736 | 0.9545 | | 0.0395 | 5.3064 | 2100 | 0.2381 | 0.9469 | | 0.0447 | 5.5591 | 2200 | 0.2138 | 0.9444 | | 0.0515 | 5.8117 | 2300 | 0.1854 | 0.9373 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3