{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcdff693780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652122347.2596664, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1+xT6qmmO9s37bOiT7E7kh8OC9B8UzugAAgD8AAIA/za4uvdm3tz+2D8y99PedvnC4SbumhPg8AAAAAAAAAACmWMy9jwYNuuU7m7sBtVw4Qt1TOsZttjcAAIA/AACAP8rrTb726wu8yV0tu4Ln67iyXHc9IrrEOQAAgD8AAIA/gJQMPiNqqT/deeY+tb2bvnDHbD4TOlY+AAAAAAAAAAAzoeW8FIqAuhtCrbpNZ3q2ilJsu5C23TUAAIA/AACAPzNLtLyF89i5gnDxOM1BMLL8Kc+61nANuAAAgD8AAIA/mvzNvVz7VbrKtBU8tMZ7NeHPWTpq9n00AACAPwAAgD/Al2C+RcWcPJbeMT3xVS49hRDsviZbLj4AAIA/AACAPw03wD0pUBu6AOROuukwVzZbXJU6ALVyOQAAgD8AAIA/2v4svwIeZ75T5iO74E5cOGn+db5iSwc5AACAPwAAgD/mPag9uE7iuctQ5rvugjU1DM2GO3L7oLQAAIA/AACAPwCU/rwFC68/thIgvmbAmr6w/g29sE4UvAAAAAAAAAAAU3BIPiRolD74IXa+G9yzvuYNPL2TNpI9AAAAAAAAAAAaDQM95/cIP1P61L09ocq+CtwDPJXqcz0AAAAAAAAAAF0Qsr5F6sq96fCyvcGyFT2iIPk+tvqUvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1vz4SwuEYUCUhpRSlIwBbJRN6AOMAXSUR0B9XDPKMefadX2UKGgGaAloD0MIBwjm6PF+W0CUhpRSlGgVTegDaBZHQH1qG/vfCQ91fZQoaAZoCWgPQwhSmWIOgso0QJSGlFKUaBVLy2gWR0B9atZ4fOlgdX2UKGgGaAloD0MI7nppioCFYECUhpRSlGgVTegDaBZHQH1+p9/jKgZ1fZQoaAZoCWgPQwjKMVncf/tcQJSGlFKUaBVN6ANoFkdAfYyQ2/BWP3V9lChoBmgJaA9DCGgDsAERciVAlIaUUpRoFUv1aBZHQH4vcriEQGx1fZQoaAZoCWgPQwiLNzKP/LhhQJSGlFKUaBVN6ANoFkdAfjUHoouwo3V9lChoBmgJaA9DCCoBMQkX3mBAlIaUUpRoFU3oA2gWR0B+Oab2Dg62dX2UKGgGaAloD0MIINRFCmU7YkCUhpRSlGgVTegDaBZHQH5Cc0tRNyp1fZQoaAZoCWgPQwjHLHsSWJ9gQJSGlFKUaBVN6ANoFkdAfkT8xKxs23V9lChoBmgJaA9DCCuJ7IMsF11AlIaUUpRoFU3oA2gWR0B+Y6TfR/mUdX2UKGgGaAloD0MIrcCQ1a3zVECUhpRSlGgVTegDaBZHQH5p+OwPiDN1fZQoaAZoCWgPQwjHEtbG2FBgQJSGlFKUaBVN6ANoFkdAfnVL+xW1dHV9lChoBmgJaA9DCJscPulEtldAlIaUUpRoFU3oA2gWR0B+hUXenAIqdX2UKGgGaAloD0MIjQsHQrKjXUCUhpRSlGgVTegDaBZHQH6ge0b961N1fZQoaAZoCWgPQwh8fEJ23uNfQJSGlFKUaBVN6ANoFkdAfrZ2exwAEXV9lChoBmgJaA9DCAWGrG71HCnAlIaUUpRoFU0yAWgWR0B+vpVlwtJ4dX2UKGgGaAloD0MIaOif4OJ8YECUhpRSlGgVTegDaBZHQH7CP6wdKdx1fZQoaAZoCWgPQwhLP+Hs1uZOQJSGlFKUaBVN6ANoFkdAfus1vES/TXV9lChoBmgJaA9DCJRt4A7UHmFAlIaUUpRoFU3oA2gWR0B+6+Cxu89PdX2UKGgGaAloD0MIBiy5isUAW0CUhpRSlGgVTegDaBZHQH79nKwIMSd1fZQoaAZoCWgPQwj4p1SJMmhjQJSGlFKUaBVN6ANoFkdAfwqi/fwZwXV9lChoBmgJaA9DCHGOOjquSVpAlIaUUpRoFU3oA2gWR0B/rkFaB7NTdX2UKGgGaAloD0MICyjU00eIW0CUhpRSlGgVTegDaBZHQH+zhCdBjWl1fZQoaAZoCWgPQwi0WfW52k5HQJSGlFKUaBVN6ANoFkdAf7fSZBsyi3V9lChoBmgJaA9DCJOsw9FVXl5AlIaUUpRoFU3oA2gWR0B/wM7+1jRVdX2UKGgGaAloD0MIwt7EkJxPYkCUhpRSlGgVTegDaBZHQH/DPs7dSEV1fZQoaAZoCWgPQwiFXRQ98EEgQJSGlFKUaBVLxWgWR0B/4X2YfGModX2UKGgGaAloD0MI5Q0w8x0BYkCUhpRSlGgVTegDaBZHQH/i9gv114h1fZQoaAZoCWgPQwg2kgThClJZQJSGlFKUaBVN6ANoFkdAf+mMbm2b5XV9lChoBmgJaA9DCGfROxVwbVZAlIaUUpRoFU3oA2gWR0CABATxoZhsdX2UKGgGaAloD0MIEVFM3gBQV0CUhpRSlGgVTegDaBZHQIATgrDqGDd1fZQoaAZoCWgPQwj2X+emzV5cQJSGlFKUaBVN6ANoFkdAgCC/kNnXd3V9lChoBmgJaA9DCAouVtRgIlxAlIaUUpRoFU3oA2gWR0CAJbR3u/lAdX2UKGgGaAloD0MI1/fhICF2V0CUhpRSlGgVTegDaBZHQIAn0iUxEfF1fZQoaAZoCWgPQwh7+gj84bthQJSGlFKUaBVN6ANoFkdAgD6Mcp9ZzXV9lChoBmgJaA9DCFrW/WMhKmBAlIaUUpRoFU3oA2gWR0CAPupo9LYgdX2UKGgGaAloD0MIDf/pBgq7YECUhpRSlGgVTegDaBZHQIBITrZ8KHB1fZQoaAZoCWgPQwirBIvDmdtZQJSGlFKUaBVN6ANoFkdAgE8f/WDpT3V9lChoBmgJaA9DCJ/Ik6RrKFpAlIaUUpRoFU3oA2gWR0CAoLCQcPvsdX2UKGgGaAloD0MIPGu3XWiuI8CUhpRSlGgVS+RoFkdAgKUJosZpBXV9lChoBmgJaA9DCJwZ/Wg4VltAlIaUUpRoFU3oA2gWR0CApY+oLofTdX2UKGgGaAloD0MIq5hKP+GiZMCUhpRSlGgVTbMBaBZHQICmBMlC1JF1fZQoaAZoCWgPQwiOXDelvP5ZQJSGlFKUaBVN6ANoFkdAgKnoVEd/8XV9lChoBmgJaA9DCGXkLOxpDmJAlIaUUpRoFU3oA2gWR0CAqzDQZ4wAdX2UKGgGaAloD0MINLqD2JlWY0CUhpRSlGgVTegDaBZHQIC4/aews5J1fZQoaAZoCWgPQwjGounsZOpZQJSGlFKUaBVN6ANoFkdAgLmjDKoybnV9lChoBmgJaA9DCEEPtW2Y62FAlIaUUpRoFU3oA2gWR0CAvHwzch1UdX2UKGgGaAloD0MIyO9t+rN3M0CUhpRSlGgVTQsBaBZHQIDGXlKbrkd1fZQoaAZoCWgPQwhqTfOOU/9cQJSGlFKUaBVN6ANoFkdAgMlQqqfe13V9lChoBmgJaA9DCJfHmpFBNGDAlIaUUpRoFU2zAWgWR0CA0MjdpItldX2UKGgGaAloD0MIda+T+rKzWUCUhpRSlGgVTegDaBZHQIDWUGPgeil1fZQoaAZoCWgPQwgCY30Dk+NeQJSGlFKUaBVN6ANoFkdAgOGqujh1knV9lChoBmgJaA9DCLiwbrw76ixAlIaUUpRoFUvyaBZHQIDmQcHWz4V1fZQoaAZoCWgPQwgrieyDrJlhQJSGlFKUaBVN6ANoFkdAgOfYGD+R5nV9lChoBmgJaA9DCGXHRiDeLGBAlIaUUpRoFU3oA2gWR0CA/gR28qWkdX2UKGgGaAloD0MIhZZ1/1hQOECUhpRSlGgVS95oFkdAgQH0cn3L3nV9lChoBmgJaA9DCAJhp1g101dAlIaUUpRoFU3oA2gWR0CBB/tygf2cdX2UKGgGaAloD0MID0WBPpHHSECUhpRSlGgVTRwBaBZHQIELfEKmbb11fZQoaAZoCWgPQwiIn/8evCBfQJSGlFKUaBVN6ANoFkdAgQ66bF0gbXV9lChoBmgJaA9DCEuPpnoySGJAlIaUUpRoFU3oA2gWR0CBZIJzkp7UdX2UKGgGaAloD0MIGof6XdieZECUhpRSlGgVTegDaBZHQIFlCQiiZfF1fZQoaAZoCWgPQwh+4gD6ffRiQJSGlFKUaBVN6ANoFkdAgWWAskIHDHV9lChoBmgJaA9DCKA1P/7SWltAlIaUUpRoFU3oA2gWR0CBag5Lh73PdX2UKGgGaAloD0MI6KViY968YECUhpRSlGgVTegDaBZHQIF346XBxgl1fZQoaAZoCWgPQwjfv3lx4kBfQJSGlFKUaBVN6ANoFkdAgXiWzF+/g3V9lChoBmgJaA9DCD2YFB+f8WJAlIaUUpRoFU3oA2gWR0CBe3b9If8udX2UKGgGaAloD0MIPrDjv8AWYECUhpRSlGgVTegDaBZHQIGGE4Pwuul1fZQoaAZoCWgPQwjZk8DmnG5mQJSGlFKUaBVN6ANoFkdAgZDZ7ojfN3V9lChoBmgJaA9DCOJZgoyAmlBAlIaUUpRoFUvkaBZHQIGSLZ+QU6B1fZQoaAZoCWgPQwgAdJgvL/leQJSGlFKUaBVN6ANoFkdAgZaGmtQsPXV9lChoBmgJaA9DCLJkjuVdwmBAlIaUUpRoFU3oA2gWR0CBoiH5aePJdX2UKGgGaAloD0MICRUcXhCJKMCUhpRSlGgVS/BoFkdAga8tb9qDb3V9lChoBmgJaA9DCJLM6h1uhFxAlIaUUpRoFU3oA2gWR0CBwXNfw7T2dX2UKGgGaAloD0MIEw1S8BQuYUCUhpRSlGgVTegDaBZHQIHFmf29L6F1fZQoaAZoCWgPQwiHi9zT1V5XQJSGlFKUaBVN6ANoFkdAgcu8/MW43HV9lChoBmgJaA9DCFM8LqrF8GVAlIaUUpRoFU3oA2gWR0CBz3FF2FFldX2UKGgGaAloD0MIthSQ9r9HYECUhpRSlGgVTegDaBZHQIHSnsAvL5h1fZQoaAZoCWgPQwhgksoUc7plQJSGlFKUaBVN6ANoFkdAgd4jSw4bTHV9lChoBmgJaA9DCKwahLndxWNAlIaUUpRoFU3oA2gWR0CB3pnaFmFrdX2UKGgGaAloD0MICmZMwZqKYkCUhpRSlGgVTegDaBZHQIHe/wXqJMx1fZQoaAZoCWgPQwjFAfT7/gBTQJSGlFKUaBVN6ANoFkdAgizdMK1G9nV9lChoBmgJaA9DCC1cVmEzME9AlIaUUpRoFU0CAWgWR0CCMbBeHBUJdX2UKGgGaAloD0MILLmKxe8mYUCUhpRSlGgVTegDaBZHQII6WZqmCRR1fZQoaAZoCWgPQwiRCfg1ksJgQJSGlFKUaBVN6ANoFkdAgj0GF8G9pXV9lChoBmgJaA9DCDj0Fg/vxT5AlIaUUpRoFUv/aBZHQIJBU4cWCVd1fZQoaAZoCWgPQwgOoyB4fKxiQJSGlFKUaBVN6ANoFkdAgkZ69K28ZnV9lChoBmgJaA9DCPcF9MKdLV9AlIaUUpRoFU3oA2gWR0CCUizPa+N+dX2UKGgGaAloD0MI7DTSUvlfY0CUhpRSlGgVTegDaBZHQIJWPa+N96V1fZQoaAZoCWgPQwitMlNafyVhQJSGlFKUaBVN6ANoFkdAgmFX5nDiwXV9lChoBmgJaA9DCEa0HVN3SV5AlIaUUpRoFU3oA2gWR0CCbUwpON5udX2UKGgGaAloD0MICkyndRucMkCUhpRSlGgVS9RoFkdAgm9kCeVcEHV9lChoBmgJaA9DCPCmW3aI3xZAlIaUUpRoFUvDaBZHQIJ4ZBeHBUJ1fZQoaAZoCWgPQwitTWN7LZNYQJSGlFKUaBVN6ANoFkdAgnybCaZx73V9lChoBmgJaA9DCM1aCkj77lxAlIaUUpRoFU3oA2gWR0CCf+4axX4kdX2UKGgGaAloD0MI7nppioAeY0CUhpRSlGgVTegDaBZHQIKIa6cy31B1fZQoaAZoCWgPQwhfYizTL1tYQJSGlFKUaBVN6ANoFkdAgotuwX668XV9lChoBmgJaA9DCI4+5gMCh2JAlIaUUpRoFU3oA2gWR0CClySzPa+OdX2UKGgGaAloD0MIOgK4WbyIIkCUhpRSlGgVTegDaBZHQIKYFwJgLJF1fZQoaAZoCWgPQwja/wBr1dJKQJSGlFKUaBVL9GgWR0CCmLLPD50sdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}