[2023-04-27 22:28:30,298][19320] Saving configuration to /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/config.json... [2023-04-27 22:28:30,299][19320] Rollout worker 0 uses device cpu [2023-04-27 22:28:30,300][19320] Rollout worker 1 uses device cpu [2023-04-27 22:28:30,300][19320] Rollout worker 2 uses device cpu [2023-04-27 22:28:30,302][19320] Rollout worker 3 uses device cpu [2023-04-27 22:28:30,302][19320] Rollout worker 4 uses device cpu [2023-04-27 22:28:30,303][19320] Rollout worker 5 uses device cpu [2023-04-27 22:28:30,304][19320] Rollout worker 6 uses device cpu [2023-04-27 22:28:30,304][19320] Rollout worker 7 uses device cpu [2023-04-27 22:28:30,345][19320] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-04-27 22:28:30,345][19320] InferenceWorker_p0-w0: min num requests: 2 [2023-04-27 22:28:30,363][19320] Starting all processes... [2023-04-27 22:28:30,364][19320] Starting process learner_proc0 [2023-04-27 22:28:30,489][19320] Starting all processes... [2023-04-27 22:28:30,494][19320] Starting process inference_proc0-0 [2023-04-27 22:28:30,494][19320] Starting process rollout_proc0 [2023-04-27 22:28:30,495][19320] Starting process rollout_proc1 [2023-04-27 22:28:30,495][19320] Starting process rollout_proc2 [2023-04-27 22:28:30,496][19320] Starting process rollout_proc3 [2023-04-27 22:28:30,496][19320] Starting process rollout_proc4 [2023-04-27 22:28:30,496][19320] Starting process rollout_proc5 [2023-04-27 22:28:30,497][19320] Starting process rollout_proc6 [2023-04-27 22:28:30,497][19320] Starting process rollout_proc7 [2023-04-27 22:28:31,380][26612] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-04-27 22:28:31,380][26612] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0 [2023-04-27 22:28:31,403][26612] Num visible devices: 1 [2023-04-27 22:28:31,424][26630] Worker 3 uses CPU cores [9, 10, 11] [2023-04-27 22:28:31,427][26612] Starting seed is not provided [2023-04-27 22:28:31,427][26612] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-04-27 22:28:31,427][26612] Initializing actor-critic model on device cuda:0 [2023-04-27 22:28:31,427][26612] RunningMeanStd input shape: (3, 72, 128) [2023-04-27 22:28:31,428][26612] RunningMeanStd input shape: (1,) [2023-04-27 22:28:31,430][26629] Worker 2 uses CPU cores [6, 7, 8] [2023-04-27 22:28:31,434][26628] Worker 1 uses CPU cores [3, 4, 5] [2023-04-27 22:28:31,439][26612] ConvEncoder: input_channels=3 [2023-04-27 22:28:31,444][26638] Worker 7 uses CPU cores [21, 22, 23] [2023-04-27 22:28:31,455][26626] Worker 0 uses CPU cores [0, 1, 2] [2023-04-27 22:28:31,457][26632] Worker 5 uses CPU cores [15, 16, 17] [2023-04-27 22:28:31,467][26631] Worker 4 uses CPU cores [12, 13, 14] [2023-04-27 22:28:31,474][26627] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-04-27 22:28:31,474][26627] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0 [2023-04-27 22:28:31,481][26657] Worker 6 uses CPU cores [18, 19, 20] [2023-04-27 22:28:31,507][26627] Num visible devices: 1 [2023-04-27 22:28:31,580][26612] Conv encoder output size: 512 [2023-04-27 22:28:31,581][26612] Policy head output size: 512 [2023-04-27 22:28:31,603][26612] Created Actor Critic model with architecture: [2023-04-27 22:28:31,603][26612] ActorCriticSharedWeights( (obs_normalizer): ObservationNormalizer( (running_mean_std): RunningMeanStdDictInPlace( (running_mean_std): ModuleDict( (obs): RunningMeanStdInPlace() ) ) ) (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace) (encoder): VizdoomEncoder( (basic_encoder): ConvEncoder( (enc): RecursiveScriptModule( original_name=ConvEncoderImpl (conv_head): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=ELU) (2): RecursiveScriptModule(original_name=Conv2d) (3): RecursiveScriptModule(original_name=ELU) (4): RecursiveScriptModule(original_name=Conv2d) (5): RecursiveScriptModule(original_name=ELU) ) (mlp_layers): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Linear) (1): RecursiveScriptModule(original_name=ELU) ) ) ) ) (core): ModelCoreRNN( (core): GRU(512, 512) ) (decoder): MlpDecoder( (mlp): Identity() ) (critic_linear): Linear(in_features=512, out_features=1, bias=True) (action_parameterization): ActionParameterizationDefault( (distribution_linear): Linear(in_features=512, out_features=5, bias=True) ) ) [2023-04-27 22:28:33,372][26612] Using optimizer [2023-04-27 22:28:33,373][26612] No checkpoints found [2023-04-27 22:28:33,373][26612] Did not load from checkpoint, starting from scratch! [2023-04-27 22:28:33,373][26612] Initialized policy 0 weights for model version 0 [2023-04-27 22:28:33,376][26612] LearnerWorker_p0 finished initialization! [2023-04-27 22:28:33,376][26612] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-04-27 22:28:33,815][19320] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-04-27 22:28:34,070][26627] RunningMeanStd input shape: (3, 72, 128) [2023-04-27 22:28:34,071][26627] RunningMeanStd input shape: (1,) [2023-04-27 22:28:34,079][26627] ConvEncoder: input_channels=3 [2023-04-27 22:28:34,158][26627] Conv encoder output size: 512 [2023-04-27 22:28:34,159][26627] Policy head output size: 512 [2023-04-27 22:28:34,896][19320] Inference worker 0-0 is ready! [2023-04-27 22:28:34,897][19320] All inference workers are ready! Signal rollout workers to start! [2023-04-27 22:28:34,912][26657] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-27 22:28:34,913][26630] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-27 22:28:34,914][26638] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-27 22:28:34,914][26629] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-27 22:28:34,914][26626] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-27 22:28:34,915][26632] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-27 22:28:34,915][26631] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-27 22:28:34,915][26628] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-27 22:28:34,949][26628] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process... [2023-04-27 22:28:34,950][26628] EvtLoop [rollout_proc1_evt_loop, process=rollout_proc1] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=() Traceback (most recent call last): File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init self.game.init() vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal slot_callable(*args) File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init env_runner.init(self.timing) File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init self._reset() File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0 File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset obs, info = self.env.reset(**kwargs) File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset obs, info = self.env.reset(**kwargs) File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset return self.env.reset(**kwargs) File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/gym/core.py", line 379, in reset obs, info = self.env.reset(**kwargs) File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/envs/env_wrappers.py", line 84, in reset obs, info = self.env.reset(**kwargs) File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/gym/core.py", line 323, in reset return self.env.reset(**kwargs) File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset return self.env.reset(**kwargs) File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset self._ensure_initialized() File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized self.initialize() File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize self._game_init() File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init raise EnvCriticalError() sample_factory.envs.env_utils.EnvCriticalError [2023-04-27 22:28:34,951][26628] Unhandled exception in evt loop rollout_proc1_evt_loop [2023-04-27 22:28:35,135][26629] Decorrelating experience for 0 frames... [2023-04-27 22:28:35,135][26630] Decorrelating experience for 0 frames... [2023-04-27 22:28:35,135][26657] Decorrelating experience for 0 frames... [2023-04-27 22:28:35,141][26631] Decorrelating experience for 0 frames... [2023-04-27 22:28:35,326][26629] Decorrelating experience for 32 frames... [2023-04-27 22:28:35,327][26631] Decorrelating experience for 32 frames... [2023-04-27 22:28:35,361][26630] Decorrelating experience for 32 frames... [2023-04-27 22:28:35,399][26632] Decorrelating experience for 0 frames... [2023-04-27 22:28:35,410][26626] Decorrelating experience for 0 frames... [2023-04-27 22:28:35,566][26631] Decorrelating experience for 64 frames... [2023-04-27 22:28:35,567][26657] Decorrelating experience for 32 frames... [2023-04-27 22:28:35,596][26632] Decorrelating experience for 32 frames... [2023-04-27 22:28:35,596][26629] Decorrelating experience for 64 frames... [2023-04-27 22:28:35,597][26630] Decorrelating experience for 64 frames... [2023-04-27 22:28:35,783][26631] Decorrelating experience for 96 frames... [2023-04-27 22:28:35,784][26657] Decorrelating experience for 64 frames... [2023-04-27 22:28:35,825][26626] Decorrelating experience for 32 frames... [2023-04-27 22:28:35,826][26629] Decorrelating experience for 96 frames... [2023-04-27 22:28:35,860][26630] Decorrelating experience for 96 frames... [2023-04-27 22:28:36,028][26626] Decorrelating experience for 64 frames... [2023-04-27 22:28:36,029][26638] Decorrelating experience for 0 frames... [2023-04-27 22:28:36,236][26638] Decorrelating experience for 32 frames... [2023-04-27 22:28:36,278][26626] Decorrelating experience for 96 frames... [2023-04-27 22:28:36,483][26638] Decorrelating experience for 64 frames... [2023-04-27 22:28:36,526][26657] Decorrelating experience for 96 frames... [2023-04-27 22:28:36,742][26638] Decorrelating experience for 96 frames... [2023-04-27 22:28:36,763][26632] Decorrelating experience for 64 frames... [2023-04-27 22:28:37,009][26632] Decorrelating experience for 96 frames... [2023-04-27 22:28:38,609][26612] Signal inference workers to stop experience collection... [2023-04-27 22:28:38,611][26627] InferenceWorker_p0-w0: stopping experience collection [2023-04-27 22:28:38,815][19320] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 130.4. Samples: 652. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-04-27 22:28:38,816][19320] Avg episode reward: [(0, '2.566')] [2023-04-27 22:28:40,413][26612] Signal inference workers to resume experience collection... [2023-04-27 22:28:40,414][26627] InferenceWorker_p0-w0: resuming experience collection [2023-04-27 22:28:43,469][26627] Updated weights for policy 0, policy_version 10 (0.0582) [2023-04-27 22:28:43,815][19320] Fps is (10 sec: 4505.6, 60 sec: 4505.6, 300 sec: 4505.6). Total num frames: 45056. Throughput: 0: 307.2. Samples: 3072. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2023-04-27 22:28:43,816][19320] Avg episode reward: [(0, '4.236')] [2023-04-27 22:28:46,007][26627] Updated weights for policy 0, policy_version 20 (0.0008) [2023-04-27 22:28:47,944][26627] Updated weights for policy 0, policy_version 30 (0.0012) [2023-04-27 22:28:48,815][19320] Fps is (10 sec: 13926.4, 60 sec: 9284.3, 300 sec: 9284.3). Total num frames: 139264. Throughput: 0: 1720.3. Samples: 25804. Policy #0 lag: (min: 0.0, avg: 0.8, max: 1.0) [2023-04-27 22:28:48,815][19320] Avg episode reward: [(0, '4.246')] [2023-04-27 22:28:48,821][26612] Saving new best policy, reward=4.246! [2023-04-27 22:28:50,306][26627] Updated weights for policy 0, policy_version 40 (0.0008) [2023-04-27 22:28:50,340][19320] Heartbeat connected on Batcher_0 [2023-04-27 22:28:50,342][19320] Heartbeat connected on LearnerWorker_p0 [2023-04-27 22:28:50,349][19320] Heartbeat connected on RolloutWorker_w0 [2023-04-27 22:28:50,350][19320] Heartbeat connected on InferenceWorker_p0-w0 [2023-04-27 22:28:50,353][19320] Heartbeat connected on RolloutWorker_w2 [2023-04-27 22:28:50,356][19320] Heartbeat connected on RolloutWorker_w3 [2023-04-27 22:28:50,358][19320] Heartbeat connected on RolloutWorker_w4 [2023-04-27 22:28:50,361][19320] Heartbeat connected on RolloutWorker_w5 [2023-04-27 22:28:50,365][19320] Heartbeat connected on RolloutWorker_w6 [2023-04-27 22:28:50,366][19320] Heartbeat connected on RolloutWorker_w7 [2023-04-27 22:28:52,258][26627] Updated weights for policy 0, policy_version 50 (0.0007) [2023-04-27 22:28:53,815][19320] Fps is (10 sec: 18432.0, 60 sec: 11468.8, 300 sec: 11468.8). Total num frames: 229376. Throughput: 0: 2718.3. Samples: 54366. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2023-04-27 22:28:53,816][19320] Avg episode reward: [(0, '4.546')] [2023-04-27 22:28:53,817][26612] Saving new best policy, reward=4.546! [2023-04-27 22:28:54,878][26627] Updated weights for policy 0, policy_version 60 (0.0013) [2023-04-27 22:28:57,353][26627] Updated weights for policy 0, policy_version 70 (0.0011) [2023-04-27 22:28:58,815][19320] Fps is (10 sec: 17612.6, 60 sec: 12615.6, 300 sec: 12615.6). Total num frames: 315392. Throughput: 0: 2677.7. Samples: 66944. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2023-04-27 22:28:58,816][19320] Avg episode reward: [(0, '4.345')] [2023-04-27 22:28:59,354][26627] Updated weights for policy 0, policy_version 80 (0.0009) [2023-04-27 22:29:02,010][26627] Updated weights for policy 0, policy_version 90 (0.0014) [2023-04-27 22:29:03,815][19320] Fps is (10 sec: 15974.3, 60 sec: 12970.7, 300 sec: 12970.7). Total num frames: 389120. Throughput: 0: 3074.0. Samples: 92220. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2023-04-27 22:29:03,815][19320] Avg episode reward: [(0, '4.536')] [2023-04-27 22:29:04,867][26627] Updated weights for policy 0, policy_version 100 (0.0020) [2023-04-27 22:29:07,514][26627] Updated weights for policy 0, policy_version 110 (0.0011) [2023-04-27 22:29:08,815][19320] Fps is (10 sec: 15974.6, 60 sec: 13575.3, 300 sec: 13575.3). Total num frames: 475136. Throughput: 0: 3287.9. Samples: 115078. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2023-04-27 22:29:08,816][19320] Avg episode reward: [(0, '4.565')] [2023-04-27 22:29:08,829][26612] Saving new best policy, reward=4.565! [2023-04-27 22:29:09,550][26627] Updated weights for policy 0, policy_version 120 (0.0007) [2023-04-27 22:29:11,733][26627] Updated weights for policy 0, policy_version 130 (0.0009) [2023-04-27 22:29:13,474][26627] Updated weights for policy 0, policy_version 140 (0.0009) [2023-04-27 22:29:13,815][19320] Fps is (10 sec: 19251.2, 60 sec: 14540.8, 300 sec: 14540.8). Total num frames: 581632. Throughput: 0: 3246.8. Samples: 129872. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0) [2023-04-27 22:29:13,816][19320] Avg episode reward: [(0, '4.521')] [2023-04-27 22:29:15,075][26627] Updated weights for policy 0, policy_version 150 (0.0006) [2023-04-27 22:29:16,757][26627] Updated weights for policy 0, policy_version 160 (0.0008) [2023-04-27 22:29:18,355][26627] Updated weights for policy 0, policy_version 170 (0.0008) [2023-04-27 22:29:18,815][19320] Fps is (10 sec: 22937.4, 60 sec: 15655.8, 300 sec: 15655.8). Total num frames: 704512. Throughput: 0: 3678.4. Samples: 165526. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2023-04-27 22:29:18,816][19320] Avg episode reward: [(0, '4.458')] [2023-04-27 22:29:20,047][26627] Updated weights for policy 0, policy_version 180 (0.0008) [2023-04-27 22:29:21,736][26627] Updated weights for policy 0, policy_version 190 (0.0009) [2023-04-27 22:29:23,376][26627] Updated weights for policy 0, policy_version 200 (0.0009) [2023-04-27 22:29:23,815][19320] Fps is (10 sec: 24576.1, 60 sec: 16547.9, 300 sec: 16547.9). Total num frames: 827392. Throughput: 0: 4482.5. Samples: 202364. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2023-04-27 22:29:23,815][19320] Avg episode reward: [(0, '4.534')] [2023-04-27 22:29:25,033][26627] Updated weights for policy 0, policy_version 210 (0.0008) [2023-04-27 22:29:26,702][26627] Updated weights for policy 0, policy_version 220 (0.0007) [2023-04-27 22:29:28,383][26627] Updated weights for policy 0, policy_version 230 (0.0007) [2023-04-27 22:29:28,815][19320] Fps is (10 sec: 24576.2, 60 sec: 17277.7, 300 sec: 17277.7). Total num frames: 950272. Throughput: 0: 4842.8. Samples: 221000. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2023-04-27 22:29:28,816][19320] Avg episode reward: [(0, '4.485')] [2023-04-27 22:29:30,029][26627] Updated weights for policy 0, policy_version 240 (0.0008) [2023-04-27 22:29:31,795][26627] Updated weights for policy 0, policy_version 250 (0.0008) [2023-04-27 22:29:33,815][19320] Fps is (10 sec: 23346.9, 60 sec: 17681.0, 300 sec: 17681.0). Total num frames: 1060864. Throughput: 0: 5146.0. Samples: 257374. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2023-04-27 22:29:33,816][19320] Avg episode reward: [(0, '4.669')] [2023-04-27 22:29:33,818][26612] Saving new best policy, reward=4.669! [2023-04-27 22:29:34,002][26627] Updated weights for policy 0, policy_version 260 (0.0008) [2023-04-27 22:29:36,837][26627] Updated weights for policy 0, policy_version 270 (0.0010) [2023-04-27 22:29:38,730][26627] Updated weights for policy 0, policy_version 280 (0.0007) [2023-04-27 22:29:38,815][19320] Fps is (10 sec: 19660.9, 60 sec: 19114.7, 300 sec: 17644.3). Total num frames: 1146880. Throughput: 0: 5076.0. Samples: 282788. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2023-04-27 22:29:38,816][19320] Avg episode reward: [(0, '4.759')] [2023-04-27 22:29:38,821][26612] Saving new best policy, reward=4.759! [2023-04-27 22:29:41,483][26627] Updated weights for policy 0, policy_version 290 (0.0013) [2023-04-27 22:29:43,815][19320] Fps is (10 sec: 16384.2, 60 sec: 19660.8, 300 sec: 17495.8). Total num frames: 1224704. Throughput: 0: 5061.7. Samples: 294720. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0) [2023-04-27 22:29:43,817][19320] Avg episode reward: [(0, '4.496')] [2023-04-27 22:29:43,996][26627] Updated weights for policy 0, policy_version 300 (0.0009) [2023-04-27 22:29:45,921][26627] Updated weights for policy 0, policy_version 310 (0.0009) [2023-04-27 22:29:47,745][26627] Updated weights for policy 0, policy_version 320 (0.0007) [2023-04-27 22:29:48,815][19320] Fps is (10 sec: 17203.2, 60 sec: 19660.8, 300 sec: 17585.5). Total num frames: 1318912. Throughput: 0: 5135.5. Samples: 323316. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2023-04-27 22:29:48,816][19320] Avg episode reward: [(0, '4.280')] [2023-04-27 22:29:50,625][26627] Updated weights for policy 0, policy_version 330 (0.0007) [2023-04-27 22:29:52,896][26627] Updated weights for policy 0, policy_version 340 (0.0009) [2023-04-27 22:29:53,815][19320] Fps is (10 sec: 17612.0, 60 sec: 19524.1, 300 sec: 17510.3). Total num frames: 1400832. Throughput: 0: 5191.6. Samples: 348700. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2023-04-27 22:29:53,816][19320] Avg episode reward: [(0, '4.253')] [2023-04-27 22:29:56,313][26627] Updated weights for policy 0, policy_version 350 (0.0015) [2023-04-27 22:29:58,498][26627] Updated weights for policy 0, policy_version 360 (0.0007) [2023-04-27 22:29:58,815][19320] Fps is (10 sec: 15974.4, 60 sec: 19387.8, 300 sec: 17396.0). Total num frames: 1478656. Throughput: 0: 5059.1. Samples: 357532. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2023-04-27 22:29:58,816][19320] Avg episode reward: [(0, '4.385')] [2023-04-27 22:30:01,271][26627] Updated weights for policy 0, policy_version 370 (0.0012) [2023-04-27 22:30:03,815][19320] Fps is (10 sec: 14746.0, 60 sec: 19319.4, 300 sec: 17203.2). Total num frames: 1548288. Throughput: 0: 4768.2. Samples: 380094. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2023-04-27 22:30:03,816][19320] Avg episode reward: [(0, '4.464')] [2023-04-27 22:30:04,133][26627] Updated weights for policy 0, policy_version 380 (0.0012) [2023-04-27 22:30:06,244][26627] Updated weights for policy 0, policy_version 390 (0.0007) [2023-04-27 22:30:07,903][26627] Updated weights for policy 0, policy_version 400 (0.0008) [2023-04-27 22:30:08,815][19320] Fps is (10 sec: 18022.4, 60 sec: 19729.1, 300 sec: 17461.9). Total num frames: 1658880. Throughput: 0: 4616.3. Samples: 410098. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2023-04-27 22:30:08,816][19320] Avg episode reward: [(0, '4.384')] [2023-04-27 22:30:09,574][26627] Updated weights for policy 0, policy_version 410 (0.0009) [2023-04-27 22:30:11,225][26627] Updated weights for policy 0, policy_version 420 (0.0008) [2023-04-27 22:30:12,922][26627] Updated weights for policy 0, policy_version 430 (0.0010) [2023-04-27 22:30:13,815][19320] Fps is (10 sec: 23347.7, 60 sec: 20002.1, 300 sec: 17817.6). Total num frames: 1781760. Throughput: 0: 4617.6. Samples: 428792. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2023-04-27 22:30:13,816][19320] Avg episode reward: [(0, '4.328')] [2023-04-27 22:30:14,554][26627] Updated weights for policy 0, policy_version 440 (0.0007) [2023-04-27 22:30:16,206][26627] Updated weights for policy 0, policy_version 450 (0.0007) [2023-04-27 22:30:17,871][26627] Updated weights for policy 0, policy_version 460 (0.0009) [2023-04-27 22:30:18,815][19320] Fps is (10 sec: 24985.5, 60 sec: 20070.4, 300 sec: 18178.4). Total num frames: 1908736. Throughput: 0: 4631.5. Samples: 465790. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2023-04-27 22:30:18,816][19320] Avg episode reward: [(0, '4.316')] [2023-04-27 22:30:19,460][26627] Updated weights for policy 0, policy_version 470 (0.0008) [2023-04-27 22:30:21,046][26627] Updated weights for policy 0, policy_version 480 (0.0009) [2023-04-27 22:30:22,710][26627] Updated weights for policy 0, policy_version 490 (0.0009) [2023-04-27 22:30:23,815][19320] Fps is (10 sec: 24985.5, 60 sec: 20070.4, 300 sec: 18469.2). Total num frames: 2031616. Throughput: 0: 4906.8. Samples: 503596. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0) [2023-04-27 22:30:23,816][19320] Avg episode reward: [(0, '4.388')] [2023-04-27 22:30:24,368][26627] Updated weights for policy 0, policy_version 500 (0.0007) [2023-04-27 22:30:25,982][26627] Updated weights for policy 0, policy_version 510 (0.0009) [2023-04-27 22:30:28,815][19320] Fps is (10 sec: 20889.7, 60 sec: 19456.0, 300 sec: 18414.2). Total num frames: 2117632. Throughput: 0: 5056.4. Samples: 522256. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0) [2023-04-27 22:30:28,816][19320] Avg episode reward: [(0, '4.397')] [2023-04-27 22:30:28,820][26612] Saving /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000517_2117632.pth... [2023-04-27 22:30:29,361][26627] Updated weights for policy 0, policy_version 520 (0.0015) [2023-04-27 22:30:31,575][26627] Updated weights for policy 0, policy_version 530 (0.0009) [2023-04-27 22:30:33,673][26627] Updated weights for policy 0, policy_version 540 (0.0007) [2023-04-27 22:30:33,815][19320] Fps is (10 sec: 18022.5, 60 sec: 19183.0, 300 sec: 18432.0). Total num frames: 2211840. Throughput: 0: 4930.8. Samples: 545200. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0) [2023-04-27 22:30:33,816][19320] Avg episode reward: [(0, '4.420')] [2023-04-27 22:30:35,975][26627] Updated weights for policy 0, policy_version 550 (0.0008) [2023-04-27 22:30:38,045][26627] Updated weights for policy 0, policy_version 560 (0.0010) [2023-04-27 22:30:38,815][19320] Fps is (10 sec: 18841.5, 60 sec: 19319.5, 300 sec: 18448.4). Total num frames: 2306048. Throughput: 0: 4988.7. Samples: 573190. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2023-04-27 22:30:38,816][19320] Avg episode reward: [(0, '4.549')] [2023-04-27 22:30:40,672][26627] Updated weights for policy 0, policy_version 570 (0.0011) [2023-04-27 22:30:43,150][26627] Updated weights for policy 0, policy_version 580 (0.0012) [2023-04-27 22:30:43,815][19320] Fps is (10 sec: 17612.8, 60 sec: 19387.7, 300 sec: 18369.0). Total num frames: 2387968. Throughput: 0: 5056.8. Samples: 585088. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2023-04-27 22:30:43,816][19320] Avg episode reward: [(0, '4.520')] [2023-04-27 22:30:45,278][26627] Updated weights for policy 0, policy_version 590 (0.0007) [2023-04-27 22:30:47,790][26627] Updated weights for policy 0, policy_version 600 (0.0007) [2023-04-27 22:30:48,815][19320] Fps is (10 sec: 17203.2, 60 sec: 19319.5, 300 sec: 18356.1). Total num frames: 2478080. Throughput: 0: 5159.8. Samples: 612286. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2023-04-27 22:30:48,816][19320] Avg episode reward: [(0, '4.326')] [2023-04-27 22:30:50,346][26627] Updated weights for policy 0, policy_version 610 (0.0008) [2023-04-27 22:30:53,815][19320] Fps is (10 sec: 14745.6, 60 sec: 18910.0, 300 sec: 18110.2). Total num frames: 2535424. Throughput: 0: 4977.5. Samples: 634084. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2023-04-27 22:30:53,816][19320] Avg episode reward: [(0, '4.424')] [2023-04-27 22:30:53,893][26627] Updated weights for policy 0, policy_version 620 (0.0019) [2023-04-27 22:30:56,047][26627] Updated weights for policy 0, policy_version 630 (0.0007) [2023-04-27 22:30:58,480][26627] Updated weights for policy 0, policy_version 640 (0.0011) [2023-04-27 22:30:58,815][19320] Fps is (10 sec: 14745.6, 60 sec: 19114.7, 300 sec: 18107.1). Total num frames: 2625536. Throughput: 0: 4805.1. Samples: 645020. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2023-04-27 22:30:58,815][19320] Avg episode reward: [(0, '4.450')] [2023-04-27 22:31:00,719][26627] Updated weights for policy 0, policy_version 650 (0.0008) [2023-04-27 22:31:02,385][26627] Updated weights for policy 0, policy_version 660 (0.0008) [2023-04-27 22:31:03,815][19320] Fps is (10 sec: 20070.4, 60 sec: 19797.4, 300 sec: 18240.9). Total num frames: 2736128. Throughput: 0: 4617.8. Samples: 673592. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0) [2023-04-27 22:31:03,816][19320] Avg episode reward: [(0, '4.602')] [2023-04-27 22:31:04,041][26627] Updated weights for policy 0, policy_version 670 (0.0010) [2023-04-27 22:31:05,642][26627] Updated weights for policy 0, policy_version 680 (0.0009) [2023-04-27 22:31:07,304][26627] Updated weights for policy 0, policy_version 690 (0.0007) [2023-04-27 22:31:08,815][19320] Fps is (10 sec: 23756.8, 60 sec: 20070.4, 300 sec: 18471.6). Total num frames: 2863104. Throughput: 0: 4611.2. Samples: 711102. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2023-04-27 22:31:08,816][19320] Avg episode reward: [(0, '4.465')] [2023-04-27 22:31:08,913][26627] Updated weights for policy 0, policy_version 700 (0.0008) [2023-04-27 22:31:10,614][26627] Updated weights for policy 0, policy_version 710 (0.0006) [2023-04-27 22:31:12,270][26627] Updated weights for policy 0, policy_version 720 (0.0007) [2023-04-27 22:31:13,815][19320] Fps is (10 sec: 24985.6, 60 sec: 20070.4, 300 sec: 18662.4). Total num frames: 2985984. Throughput: 0: 4608.2. Samples: 729626. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2023-04-27 22:31:13,816][19320] Avg episode reward: [(0, '4.396')] [2023-04-27 22:31:13,869][26627] Updated weights for policy 0, policy_version 730 (0.0007) [2023-04-27 22:31:15,506][26627] Updated weights for policy 0, policy_version 740 (0.0009) [2023-04-27 22:31:17,160][26627] Updated weights for policy 0, policy_version 750 (0.0008) [2023-04-27 22:31:18,815][19320] Fps is (10 sec: 24576.0, 60 sec: 20002.1, 300 sec: 18841.6). Total num frames: 3108864. Throughput: 0: 4932.6. Samples: 767168. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2023-04-27 22:31:18,816][19320] Avg episode reward: [(0, '4.364')] [2023-04-27 22:31:18,848][26627] Updated weights for policy 0, policy_version 760 (0.0009) [2023-04-27 22:31:21,623][26627] Updated weights for policy 0, policy_version 770 (0.0013) [2023-04-27 22:31:23,815][19320] Fps is (10 sec: 20070.4, 60 sec: 19251.2, 300 sec: 18745.2). Total num frames: 3186688. Throughput: 0: 4907.6. Samples: 794032. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2023-04-27 22:31:23,816][19320] Avg episode reward: [(0, '4.513')] [2023-04-27 22:31:24,158][26627] Updated weights for policy 0, policy_version 780 (0.0013) [2023-04-27 22:31:26,913][26627] Updated weights for policy 0, policy_version 790 (0.0012) [2023-04-27 22:31:28,815][19320] Fps is (10 sec: 14336.0, 60 sec: 18909.9, 300 sec: 18584.1). Total num frames: 3252224. Throughput: 0: 4932.8. Samples: 807066. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2023-04-27 22:31:28,815][19320] Avg episode reward: [(0, '4.367')] [2023-04-27 22:31:30,689][26627] Updated weights for policy 0, policy_version 800 (0.0012) [2023-04-27 22:31:33,035][26627] Updated weights for policy 0, policy_version 810 (0.0011) [2023-04-27 22:31:33,815][19320] Fps is (10 sec: 14745.6, 60 sec: 18705.1, 300 sec: 18523.0). Total num frames: 3334144. Throughput: 0: 4712.5. Samples: 824348. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2023-04-27 22:31:33,816][19320] Avg episode reward: [(0, '4.320')] [2023-04-27 22:31:35,061][26627] Updated weights for policy 0, policy_version 820 (0.0007) [2023-04-27 22:31:37,474][26627] Updated weights for policy 0, policy_version 830 (0.0010) [2023-04-27 22:31:38,815][19320] Fps is (10 sec: 16793.5, 60 sec: 18568.5, 300 sec: 18487.4). Total num frames: 3420160. Throughput: 0: 4863.2. Samples: 852926. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2023-04-27 22:31:38,816][19320] Avg episode reward: [(0, '4.490')] [2023-04-27 22:31:40,044][26627] Updated weights for policy 0, policy_version 840 (0.0007) [2023-04-27 22:31:42,664][26627] Updated weights for policy 0, policy_version 850 (0.0014) [2023-04-27 22:31:43,815][19320] Fps is (10 sec: 15974.4, 60 sec: 18432.0, 300 sec: 18388.9). Total num frames: 3493888. Throughput: 0: 4869.0. Samples: 864126. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0) [2023-04-27 22:31:43,816][19320] Avg episode reward: [(0, '4.454')] [2023-04-27 22:31:45,339][26627] Updated weights for policy 0, policy_version 860 (0.0014) [2023-04-27 22:31:47,414][26627] Updated weights for policy 0, policy_version 870 (0.0015) [2023-04-27 22:31:48,815][19320] Fps is (10 sec: 16793.2, 60 sec: 18500.2, 300 sec: 18400.5). Total num frames: 3588096. Throughput: 0: 4780.7. Samples: 888726. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2023-04-27 22:31:48,816][19320] Avg episode reward: [(0, '4.718')] [2023-04-27 22:31:49,524][26627] Updated weights for policy 0, policy_version 880 (0.0008) [2023-04-27 22:31:51,616][26627] Updated weights for policy 0, policy_version 890 (0.0012) [2023-04-27 22:31:53,815][19320] Fps is (10 sec: 18841.4, 60 sec: 19114.6, 300 sec: 18411.5). Total num frames: 3682304. Throughput: 0: 4563.8. Samples: 916472. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2023-04-27 22:31:53,816][19320] Avg episode reward: [(0, '4.287')] [2023-04-27 22:31:53,847][26627] Updated weights for policy 0, policy_version 900 (0.0011) [2023-04-27 22:31:55,513][26627] Updated weights for policy 0, policy_version 910 (0.0009) [2023-04-27 22:31:57,111][26627] Updated weights for policy 0, policy_version 920 (0.0007) [2023-04-27 22:31:58,754][26627] Updated weights for policy 0, policy_version 930 (0.0007) [2023-04-27 22:31:58,815][19320] Fps is (10 sec: 22118.6, 60 sec: 19729.0, 300 sec: 18581.8). Total num frames: 3809280. Throughput: 0: 4564.9. Samples: 935046. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0) [2023-04-27 22:31:58,816][19320] Avg episode reward: [(0, '4.318')] [2023-04-27 22:32:00,439][26627] Updated weights for policy 0, policy_version 940 (0.0007) [2023-04-27 22:32:02,146][26627] Updated weights for policy 0, policy_version 950 (0.0007) [2023-04-27 22:32:03,815][19320] Fps is (10 sec: 24576.2, 60 sec: 19865.6, 300 sec: 18705.1). Total num frames: 3928064. Throughput: 0: 4548.2. Samples: 971838. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2023-04-27 22:32:03,816][19320] Avg episode reward: [(0, '4.347')] [2023-04-27 22:32:03,837][26627] Updated weights for policy 0, policy_version 960 (0.0008) [2023-04-27 22:32:05,497][26627] Updated weights for policy 0, policy_version 970 (0.0008) [2023-04-27 22:32:06,763][26612] Stopping Batcher_0... [2023-04-27 22:32:06,763][26612] Saving /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2023-04-27 22:32:06,763][26612] Loop batcher_evt_loop terminating... [2023-04-27 22:32:06,763][19320] Component Batcher_0 stopped! [2023-04-27 22:32:06,764][19320] Component RolloutWorker_w1 process died already! Don't wait for it. [2023-04-27 22:32:06,768][26638] Stopping RolloutWorker_w7... [2023-04-27 22:32:06,769][26638] Loop rollout_proc7_evt_loop terminating... [2023-04-27 22:32:06,769][26630] Stopping RolloutWorker_w3... [2023-04-27 22:32:06,769][26631] Stopping RolloutWorker_w4... [2023-04-27 22:32:06,769][26630] Loop rollout_proc3_evt_loop terminating... [2023-04-27 22:32:06,769][26631] Loop rollout_proc4_evt_loop terminating... [2023-04-27 22:32:06,769][26629] Stopping RolloutWorker_w2... [2023-04-27 22:32:06,768][19320] Component RolloutWorker_w7 stopped! [2023-04-27 22:32:06,769][26629] Loop rollout_proc2_evt_loop terminating... [2023-04-27 22:32:06,770][19320] Component RolloutWorker_w3 stopped! [2023-04-27 22:32:06,770][26632] Stopping RolloutWorker_w5... [2023-04-27 22:32:06,771][26632] Loop rollout_proc5_evt_loop terminating... [2023-04-27 22:32:06,771][19320] Component RolloutWorker_w4 stopped! [2023-04-27 22:32:06,772][26657] Stopping RolloutWorker_w6... [2023-04-27 22:32:06,773][26657] Loop rollout_proc6_evt_loop terminating... [2023-04-27 22:32:06,773][19320] Component RolloutWorker_w2 stopped! [2023-04-27 22:32:06,774][19320] Component RolloutWorker_w5 stopped! [2023-04-27 22:32:06,775][19320] Component RolloutWorker_w6 stopped! [2023-04-27 22:32:06,775][26627] Weights refcount: 2 0 [2023-04-27 22:32:06,777][26627] Stopping InferenceWorker_p0-w0... [2023-04-27 22:32:06,777][26627] Loop inference_proc0-0_evt_loop terminating... [2023-04-27 22:32:06,777][19320] Component InferenceWorker_p0-w0 stopped! [2023-04-27 22:32:06,786][26626] Stopping RolloutWorker_w0... [2023-04-27 22:32:06,787][26626] Loop rollout_proc0_evt_loop terminating... [2023-04-27 22:32:06,786][19320] Component RolloutWorker_w0 stopped! [2023-04-27 22:32:06,811][26612] Saving /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2023-04-27 22:32:06,858][26612] Stopping LearnerWorker_p0... [2023-04-27 22:32:06,859][26612] Loop learner_proc0_evt_loop terminating... [2023-04-27 22:32:06,859][19320] Component LearnerWorker_p0 stopped! [2023-04-27 22:32:06,860][19320] Waiting for process learner_proc0 to stop... [2023-04-27 22:32:07,560][19320] Waiting for process inference_proc0-0 to join... [2023-04-27 22:32:07,561][19320] Waiting for process rollout_proc0 to join... [2023-04-27 22:32:07,562][19320] Waiting for process rollout_proc1 to join... [2023-04-27 22:32:07,563][19320] Waiting for process rollout_proc2 to join... [2023-04-27 22:32:07,564][19320] Waiting for process rollout_proc3 to join... [2023-04-27 22:32:07,564][19320] Waiting for process rollout_proc4 to join... [2023-04-27 22:32:07,565][19320] Waiting for process rollout_proc5 to join... [2023-04-27 22:32:07,566][19320] Waiting for process rollout_proc6 to join... [2023-04-27 22:32:07,567][19320] Waiting for process rollout_proc7 to join... [2023-04-27 22:32:07,567][19320] Batcher 0 profile tree view: batching: 12.7812, releasing_batches: 0.0195 [2023-04-27 22:32:07,568][19320] InferenceWorker_p0-w0 profile tree view: wait_policy: 0.0000 wait_policy_total: 2.8370 update_model: 2.8123 weight_update: 0.0007 one_step: 0.0023 handle_policy_step: 195.8112 deserialize: 5.6395, stack: 0.7269, obs_to_device_normalize: 44.5135, forward: 68.6296, send_messages: 17.9614 prepare_outputs: 52.0115 to_cpu: 45.1667 [2023-04-27 22:32:07,569][19320] Learner 0 profile tree view: misc: 0.0037, prepare_batch: 9.4485 train: 22.5017 epoch_init: 0.0033, minibatch_init: 0.0045, losses_postprocess: 0.4800, kl_divergence: 0.4893, after_optimizer: 6.8805 calculate_losses: 7.1964 losses_init: 0.0020, forward_head: 0.5407, bptt_initial: 3.3368, tail: 0.4113, advantages_returns: 0.1193, losses: 1.7274 bptt: 0.9502 bptt_forward_core: 0.9150 update: 7.1922 clip: 0.8865 [2023-04-27 22:32:07,569][19320] RolloutWorker_w0 profile tree view: wait_for_trajectories: 0.0991, enqueue_policy_requests: 5.1038, env_step: 94.9605, overhead: 6.8366, complete_rollouts: 0.2024 save_policy_outputs: 6.2491 split_output_tensors: 2.9626 [2023-04-27 22:32:07,570][19320] RolloutWorker_w7 profile tree view: wait_for_trajectories: 0.0969, enqueue_policy_requests: 5.1019, env_step: 95.1988, overhead: 6.8454, complete_rollouts: 0.2055 save_policy_outputs: 6.4640 split_output_tensors: 3.0653 [2023-04-27 22:32:07,571][19320] Loop Runner_EvtLoop terminating... [2023-04-27 22:32:07,572][19320] Runner profile tree view: main_loop: 217.2086 [2023-04-27 22:32:07,573][19320] Collected {0: 4005888}, FPS: 18442.6 [2023-04-27 22:33:30,876][19320] Loading existing experiment configuration from /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/config.json [2023-04-27 22:33:30,877][19320] Overriding arg 'num_workers' with value 1 passed from command line [2023-04-27 22:33:30,878][19320] Adding new argument 'no_render'=True that is not in the saved config file! [2023-04-27 22:33:30,878][19320] Adding new argument 'save_video'=True that is not in the saved config file! [2023-04-27 22:33:30,879][19320] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file! [2023-04-27 22:33:30,879][19320] Adding new argument 'video_name'=None that is not in the saved config file! [2023-04-27 22:33:30,880][19320] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file! [2023-04-27 22:33:30,881][19320] Adding new argument 'max_num_episodes'=10 that is not in the saved config file! [2023-04-27 22:33:30,882][19320] Adding new argument 'push_to_hub'=False that is not in the saved config file! [2023-04-27 22:33:30,882][19320] Adding new argument 'hf_repository'=None that is not in the saved config file! [2023-04-27 22:33:30,883][19320] Adding new argument 'policy_index'=0 that is not in the saved config file! [2023-04-27 22:33:30,883][19320] Adding new argument 'eval_deterministic'=False that is not in the saved config file! [2023-04-27 22:33:30,884][19320] Adding new argument 'train_script'=None that is not in the saved config file! [2023-04-27 22:33:30,885][19320] Adding new argument 'enjoy_script'=None that is not in the saved config file! [2023-04-27 22:33:30,885][19320] Using frameskip 1 and render_action_repeat=4 for evaluation [2023-04-27 22:33:30,891][19320] Doom resolution: 160x120, resize resolution: (128, 72) [2023-04-27 22:33:30,892][19320] RunningMeanStd input shape: (3, 72, 128) [2023-04-27 22:33:30,893][19320] RunningMeanStd input shape: (1,) [2023-04-27 22:33:30,904][19320] ConvEncoder: input_channels=3 [2023-04-27 22:33:30,994][19320] Conv encoder output size: 512 [2023-04-27 22:33:30,995][19320] Policy head output size: 512 [2023-04-27 22:33:32,427][19320] Loading state from checkpoint /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2023-04-27 22:33:33,708][19320] Num frames 100... [2023-04-27 22:33:33,796][19320] Num frames 200... [2023-04-27 22:33:33,876][19320] Num frames 300... [2023-04-27 22:33:33,996][19320] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840 [2023-04-27 22:33:33,997][19320] Avg episode reward: 3.840, avg true_objective: 3.840 [2023-04-27 22:33:34,014][19320] Num frames 400... [2023-04-27 22:33:34,096][19320] Num frames 500... [2023-04-27 22:33:34,173][19320] Num frames 600... [2023-04-27 22:33:34,251][19320] Num frames 700... [2023-04-27 22:33:34,358][19320] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840 [2023-04-27 22:33:34,359][19320] Avg episode reward: 3.840, avg true_objective: 3.840 [2023-04-27 22:33:34,389][19320] Num frames 800... [2023-04-27 22:33:34,468][19320] Num frames 900... [2023-04-27 22:33:34,542][19320] Num frames 1000... [2023-04-27 22:33:34,617][19320] Num frames 1100... [2023-04-27 22:33:34,736][19320] Avg episode rewards: #0: 4.280, true rewards: #0: 3.947 [2023-04-27 22:33:34,737][19320] Avg episode reward: 4.280, avg true_objective: 3.947 [2023-04-27 22:33:34,752][19320] Num frames 1200... [2023-04-27 22:33:34,835][19320] Num frames 1300... [2023-04-27 22:33:34,915][19320] Num frames 1400... [2023-04-27 22:33:34,997][19320] Num frames 1500... [2023-04-27 22:33:35,092][19320] Num frames 1600... [2023-04-27 22:33:35,144][19320] Avg episode rewards: #0: 4.500, true rewards: #0: 4.000 [2023-04-27 22:33:35,145][19320] Avg episode reward: 4.500, avg true_objective: 4.000 [2023-04-27 22:33:35,229][19320] Num frames 1700... [2023-04-27 22:33:35,311][19320] Num frames 1800... [2023-04-27 22:33:35,391][19320] Num frames 1900... [2023-04-27 22:33:35,474][19320] Num frames 2000... [2023-04-27 22:33:35,569][19320] Avg episode rewards: #0: 4.696, true rewards: #0: 4.096 [2023-04-27 22:33:35,570][19320] Avg episode reward: 4.696, avg true_objective: 4.096 [2023-04-27 22:33:35,617][19320] Num frames 2100... [2023-04-27 22:33:35,698][19320] Num frames 2200... [2023-04-27 22:33:35,772][19320] Num frames 2300... [2023-04-27 22:33:35,849][19320] Num frames 2400... [2023-04-27 22:33:35,932][19320] Avg episode rewards: #0: 4.553, true rewards: #0: 4.053 [2023-04-27 22:33:35,933][19320] Avg episode reward: 4.553, avg true_objective: 4.053 [2023-04-27 22:33:35,989][19320] Num frames 2500... [2023-04-27 22:33:36,070][19320] Num frames 2600... [2023-04-27 22:33:36,157][19320] Num frames 2700... [2023-04-27 22:33:36,236][19320] Num frames 2800... [2023-04-27 22:33:36,319][19320] Num frames 2900... [2023-04-27 22:33:36,396][19320] Num frames 3000... [2023-04-27 22:33:36,479][19320] Avg episode rewards: #0: 5.200, true rewards: #0: 4.343 [2023-04-27 22:33:36,480][19320] Avg episode reward: 5.200, avg true_objective: 4.343 [2023-04-27 22:33:36,531][19320] Num frames 3100... [2023-04-27 22:33:36,612][19320] Num frames 3200... [2023-04-27 22:33:36,740][19320] Avg episode rewards: #0: 4.870, true rewards: #0: 4.120 [2023-04-27 22:33:36,741][19320] Avg episode reward: 4.870, avg true_objective: 4.120 [2023-04-27 22:33:36,747][19320] Num frames 3300... [2023-04-27 22:33:36,839][19320] Num frames 3400... [2023-04-27 22:33:36,925][19320] Num frames 3500... [2023-04-27 22:33:36,998][19320] Num frames 3600... [2023-04-27 22:33:37,114][19320] Avg episode rewards: #0: 4.756, true rewards: #0: 4.089 [2023-04-27 22:33:37,115][19320] Avg episode reward: 4.756, avg true_objective: 4.089 [2023-04-27 22:33:37,136][19320] Num frames 3700... [2023-04-27 22:33:37,237][19320] Num frames 3800... [2023-04-27 22:33:37,323][19320] Num frames 3900... [2023-04-27 22:33:37,407][19320] Num frames 4000... [2023-04-27 22:33:37,512][19320] Avg episode rewards: #0: 4.664, true rewards: #0: 4.064 [2023-04-27 22:33:37,513][19320] Avg episode reward: 4.664, avg true_objective: 4.064 [2023-04-27 22:33:41,947][19320] Replay video saved to /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/replay.mp4! [2023-04-27 22:36:21,719][19320] Loading existing experiment configuration from /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/config.json [2023-04-27 22:36:21,720][19320] Overriding arg 'num_workers' with value 1 passed from command line [2023-04-27 22:36:21,721][19320] Adding new argument 'no_render'=True that is not in the saved config file! [2023-04-27 22:36:21,722][19320] Adding new argument 'save_video'=True that is not in the saved config file! [2023-04-27 22:36:21,722][19320] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file! [2023-04-27 22:36:21,723][19320] Adding new argument 'video_name'=None that is not in the saved config file! [2023-04-27 22:36:21,724][19320] Adding new argument 'max_num_frames'=100000 that is not in the saved config file! [2023-04-27 22:36:21,724][19320] Adding new argument 'max_num_episodes'=10 that is not in the saved config file! [2023-04-27 22:36:21,725][19320] Adding new argument 'push_to_hub'=True that is not in the saved config file! [2023-04-27 22:36:21,726][19320] Adding new argument 'hf_repository'='ItchyB/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file! [2023-04-27 22:36:21,726][19320] Adding new argument 'policy_index'=0 that is not in the saved config file! [2023-04-27 22:36:21,726][19320] Adding new argument 'eval_deterministic'=False that is not in the saved config file! [2023-04-27 22:36:21,727][19320] Adding new argument 'train_script'=None that is not in the saved config file! [2023-04-27 22:36:21,728][19320] Adding new argument 'enjoy_script'=None that is not in the saved config file! [2023-04-27 22:36:21,729][19320] Using frameskip 1 and render_action_repeat=4 for evaluation [2023-04-27 22:36:21,732][19320] RunningMeanStd input shape: (3, 72, 128) [2023-04-27 22:36:21,733][19320] RunningMeanStd input shape: (1,) [2023-04-27 22:36:21,740][19320] ConvEncoder: input_channels=3 [2023-04-27 22:36:21,763][19320] Conv encoder output size: 512 [2023-04-27 22:36:21,764][19320] Policy head output size: 512 [2023-04-27 22:36:21,791][19320] Loading state from checkpoint /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2023-04-27 22:36:22,219][19320] Num frames 100... [2023-04-27 22:36:22,339][19320] Num frames 200... [2023-04-27 22:36:22,445][19320] Num frames 300... [2023-04-27 22:36:22,572][19320] Num frames 400... [2023-04-27 22:36:22,684][19320] Num frames 500... [2023-04-27 22:36:22,754][19320] Avg episode rewards: #0: 7.120, true rewards: #0: 5.120 [2023-04-27 22:36:22,755][19320] Avg episode reward: 7.120, avg true_objective: 5.120 [2023-04-27 22:36:22,855][19320] Num frames 600... [2023-04-27 22:36:22,974][19320] Num frames 700... [2023-04-27 22:36:23,101][19320] Num frames 800... [2023-04-27 22:36:23,257][19320] Avg episode rewards: #0: 5.480, true rewards: #0: 4.480 [2023-04-27 22:36:23,258][19320] Avg episode reward: 5.480, avg true_objective: 4.480 [2023-04-27 22:36:23,263][19320] Num frames 900... [2023-04-27 22:36:23,371][19320] Num frames 1000... [2023-04-27 22:36:23,473][19320] Num frames 1100... [2023-04-27 22:36:23,587][19320] Num frames 1200... [2023-04-27 22:36:23,727][19320] Avg episode rewards: #0: 4.933, true rewards: #0: 4.267 [2023-04-27 22:36:23,728][19320] Avg episode reward: 4.933, avg true_objective: 4.267 [2023-04-27 22:36:23,755][19320] Num frames 1300... [2023-04-27 22:36:23,873][19320] Num frames 1400... [2023-04-27 22:36:23,991][19320] Num frames 1500... [2023-04-27 22:36:24,080][19320] Avg episode rewards: #0: 4.340, true rewards: #0: 3.840 [2023-04-27 22:36:24,081][19320] Avg episode reward: 4.340, avg true_objective: 3.840 [2023-04-27 22:36:24,143][19320] Num frames 1600... [2023-04-27 22:36:24,240][19320] Num frames 1700... [2023-04-27 22:36:24,341][19320] Num frames 1800... [2023-04-27 22:36:24,432][19320] Num frames 1900... [2023-04-27 22:36:24,562][19320] Avg episode rewards: #0: 4.768, true rewards: #0: 3.968 [2023-04-27 22:36:24,563][19320] Avg episode reward: 4.768, avg true_objective: 3.968 [2023-04-27 22:36:24,577][19320] Num frames 2000... [2023-04-27 22:36:24,676][19320] Num frames 2100... [2023-04-27 22:36:24,778][19320] Num frames 2200... [2023-04-27 22:36:24,881][19320] Num frames 2300... [2023-04-27 22:36:25,004][19320] Avg episode rewards: #0: 4.613, true rewards: #0: 3.947 [2023-04-27 22:36:25,005][19320] Avg episode reward: 4.613, avg true_objective: 3.947 [2023-04-27 22:36:25,036][19320] Num frames 2400... [2023-04-27 22:36:25,138][19320] Num frames 2500... [2023-04-27 22:36:25,237][19320] Num frames 2600... [2023-04-27 22:36:25,340][19320] Num frames 2700... [2023-04-27 22:36:25,446][19320] Avg episode rewards: #0: 4.503, true rewards: #0: 3.931 [2023-04-27 22:36:25,447][19320] Avg episode reward: 4.503, avg true_objective: 3.931 [2023-04-27 22:36:25,498][19320] Num frames 2800... [2023-04-27 22:36:25,598][19320] Num frames 2900... [2023-04-27 22:36:25,701][19320] Num frames 3000... [2023-04-27 22:36:25,800][19320] Num frames 3100... [2023-04-27 22:36:25,888][19320] Avg episode rewards: #0: 4.420, true rewards: #0: 3.920 [2023-04-27 22:36:25,889][19320] Avg episode reward: 4.420, avg true_objective: 3.920 [2023-04-27 22:36:25,969][19320] Num frames 3200... [2023-04-27 22:36:26,076][19320] Num frames 3300... [2023-04-27 22:36:26,181][19320] Num frames 3400... [2023-04-27 22:36:26,281][19320] Num frames 3500... [2023-04-27 22:36:26,354][19320] Avg episode rewards: #0: 4.356, true rewards: #0: 3.911 [2023-04-27 22:36:26,355][19320] Avg episode reward: 4.356, avg true_objective: 3.911 [2023-04-27 22:36:26,446][19320] Num frames 3600... [2023-04-27 22:36:26,560][19320] Num frames 3700... [2023-04-27 22:36:26,670][19320] Num frames 3800... [2023-04-27 22:36:26,784][19320] Num frames 3900... [2023-04-27 22:36:26,842][19320] Avg episode rewards: #0: 4.304, true rewards: #0: 3.904 [2023-04-27 22:36:26,842][19320] Avg episode reward: 4.304, avg true_objective: 3.904 [2023-04-27 22:36:30,880][19320] Replay video saved to /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/replay.mp4!