license: cc-by-nc-4.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
- finance
- medical
model-index:
- name: distilbert_finetuned_ai4privacy_v2
results: []
datasets:
- ai4privacy/pii-masking-200k
- Isotonic/pii-masking-200k
pipeline_tag: token-classification
language:
- en
- ar
metrics:
- seqeval
distilbert_finetuned_ai4privacy_v2
This model is a fine-tuned version of distilbert-base-uncased on the English Subset of ai4privacy/pii-masking-200k dataset.
Useage
GitHub Implementation: Ai4Privacy
Model description
This model has been finetuned on the World's largest open source privacy dataset.
The purpose of the trained models is to remove personally identifiable information (PII) from text, especially in the context of AI assistants and LLMs.
The example texts have 54 PII classes (types of sensitive data), targeting 229 discussion subjects / use cases split across business, education, psychology and legal fields, and 5 interactions styles (e.g. casual conversation, formal document, emails etc...).
Take a look at the Github implementation for specific reasearch.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 5
Class wise metrics
It achieves the following results on the evaluation set:
Loss: 0.0451
Overall Precision: 0.9438
Overall Recall: 0.9663
Overall F1: 0.9549
Overall Accuracy: 0.9838
Accountname F1: 0.9946
Accountnumber F1: 0.9940
Age F1: 0.9624
Amount F1: 0.9643
Bic F1: 0.9929
Bitcoinaddress F1: 0.9948
Buildingnumber F1: 0.9845
City F1: 0.9955
Companyname F1: 0.9962
County F1: 0.9877
Creditcardcvv F1: 0.9643
Creditcardissuer F1: 0.9953
Creditcardnumber F1: 0.9793
Currency F1: 0.7811
Currencycode F1: 0.8850
Currencyname F1: 0.2281
Currencysymbol F1: 0.9562
Date F1: 0.9061
Dob F1: 0.7914
Email F1: 1.0
Ethereumaddress F1: 1.0
Eyecolor F1: 0.9837
Firstname F1: 0.9846
Gender F1: 0.9971
Height F1: 0.9910
Iban F1: 0.9906
Ip F1: 0.4349
Ipv4 F1: 0.8126
Ipv6 F1: 0.7679
Jobarea F1: 0.9880
Jobtitle F1: 0.9991
Jobtype F1: 0.9777
Lastname F1: 0.9684
Litecoinaddress F1: 0.9721
Mac F1: 1.0
Maskednumber F1: 0.9635
Middlename F1: 0.9330
Nearbygpscoordinate F1: 1.0
Ordinaldirection F1: 0.9910
Password F1: 1.0
Phoneimei F1: 0.9918
Phonenumber F1: 0.9962
Pin F1: 0.9477
Prefix F1: 0.9546
Secondaryaddress F1: 0.9892
Sex F1: 0.9876
Ssn F1: 0.9976
State F1: 0.9893
Street F1: 0.9873
Time F1: 0.9889
Url F1: 1.0
Useragent F1: 0.9953
Username F1: 0.9975
Vehiclevin F1: 1.0
Vehiclevrm F1: 1.0
Zipcode F1: 0.9873
Training results
Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Accountname F1 | Accountnumber F1 | Age F1 | Amount F1 | Bic F1 | Bitcoinaddress F1 | Buildingnumber F1 | City F1 | Companyname F1 | County F1 | Creditcardcvv F1 | Creditcardissuer F1 | Creditcardnumber F1 | Currency F1 | Currencycode F1 | Currencyname F1 | Currencysymbol F1 | Date F1 | Dob F1 | Email F1 | Ethereumaddress F1 | Eyecolor F1 | Firstname F1 | Gender F1 | Height F1 | Iban F1 | Ip F1 | Ipv4 F1 | Ipv6 F1 | Jobarea F1 | Jobtitle F1 | Jobtype F1 | Lastname F1 | Litecoinaddress F1 | Mac F1 | Maskednumber F1 | Middlename F1 | Nearbygpscoordinate F1 | Ordinaldirection F1 | Password F1 | Phoneimei F1 | Phonenumber F1 | Pin F1 | Prefix F1 | Secondaryaddress F1 | Sex F1 | Ssn F1 | State F1 | Street F1 | Time F1 | Url F1 | Useragent F1 | Username F1 | Vehiclevin F1 | Vehiclevrm F1 | Zipcode F1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6445 | 1.0 | 1088 | 0.3322 | 0.6449 | 0.7003 | 0.6714 | 0.8900 | 0.7607 | 0.8733 | 0.6576 | 0.1766 | 0.25 | 0.6783 | 0.3621 | 0.6005 | 0.6909 | 0.5586 | 0.0 | 0.2449 | 0.7095 | 0.2889 | 0.0 | 0.0 | 0.3902 | 0.7720 | 0.0 | 0.9862 | 0.8011 | 0.5088 | 0.7740 | 0.7118 | 0.5434 | 0.8088 | 0.0 | 0.8303 | 0.7562 | 0.5318 | 0.7294 | 0.4681 | 0.6779 | 0.0 | 0.8909 | 0.0 | 0.0107 | 0.9985 | 0.4000 | 0.7307 | 0.9057 | 0.8618 | 0.0 | 0.9127 | 0.8235 | 0.9211 | 0.8026 | 0.4656 | 0.6390 | 0.9383 | 0.9775 | 0.8868 | 0.8201 | 0.4526 | 0.0550 | 0.5368 |
0.222 | 2.0 | 2176 | 0.1259 | 0.8170 | 0.8747 | 0.8449 | 0.9478 | 0.9708 | 0.9813 | 0.7638 | 0.7427 | 0.7837 | 0.8908 | 0.8833 | 0.8747 | 0.9814 | 0.8749 | 0.7601 | 0.9777 | 0.8834 | 0.5372 | 0.4828 | 0.0056 | 0.7785 | 0.8149 | 0.3140 | 0.9956 | 0.9935 | 0.9101 | 0.9270 | 0.9450 | 0.9853 | 0.9253 | 0.0650 | 0.0084 | 0.7962 | 0.9013 | 0.9446 | 0.9203 | 0.8555 | 0.6885 | 1.0 | 0.7152 | 0.6442 | 1.0 | 0.9623 | 0.9349 | 0.9905 | 0.9782 | 0.7656 | 0.9324 | 0.9903 | 0.9736 | 0.9274 | 0.8520 | 0.9138 | 0.9678 | 0.9922 | 0.9893 | 0.9804 | 0.9646 | 0.8556 | 0.8385 |
0.1331 | 3.0 | 3264 | 0.0773 | 0.9133 | 0.9371 | 0.9250 | 0.9654 | 0.9822 | 0.9815 | 0.9196 | 0.8852 | 0.9718 | 0.9785 | 0.9215 | 0.9757 | 0.9935 | 0.9651 | 0.8742 | 0.9921 | 0.9438 | 0.7568 | 0.7710 | 0.0 | 0.8998 | 0.7895 | 0.6578 | 0.9994 | 1.0 | 0.9554 | 0.9525 | 0.9823 | 0.9910 | 0.9866 | 0.0435 | 0.8293 | 0.7824 | 0.9671 | 0.9794 | 0.9571 | 0.9447 | 0.9141 | 1.0 | 0.8825 | 0.7988 | 1.0 | 0.9797 | 0.9921 | 0.9932 | 0.9943 | 0.8726 | 0.9401 | 0.9860 | 0.9792 | 0.9928 | 0.9740 | 0.9604 | 0.9730 | 0.9983 | 0.9964 | 0.9959 | 0.9890 | 0.9774 | 0.9247 |
0.0847 | 4.0 | 4352 | 0.0503 | 0.9368 | 0.9614 | 0.9489 | 0.9789 | 0.9955 | 0.9949 | 0.9573 | 0.9480 | 0.9929 | 0.9846 | 0.9808 | 0.9927 | 0.9962 | 0.9811 | 0.9436 | 0.9953 | 0.9695 | 0.7826 | 0.8713 | 0.1653 | 0.9458 | 0.8782 | 0.7996 | 1.0 | 1.0 | 0.9809 | 0.9816 | 0.9941 | 0.9910 | 0.9906 | 0.3389 | 0.8364 | 0.7066 | 0.9862 | 1.0 | 0.9795 | 0.9637 | 0.9429 | 1.0 | 0.9438 | 0.9165 | 1.0 | 0.9864 | 1.0 | 0.9932 | 0.9962 | 0.9352 | 0.9483 | 0.9860 | 0.9866 | 0.9976 | 0.9884 | 0.9827 | 0.9881 | 1.0 | 0.9953 | 0.9975 | 0.9945 | 0.9915 | 0.9841 |
0.0557 | 5.0 | 5440 | 0.0451 | 0.9438 | 0.9663 | 0.9549 | 0.9838 | 0.9946 | 0.9940 | 0.9624 | 0.9643 | 0.9929 | 0.9948 | 0.9845 | 0.9955 | 0.9962 | 0.9877 | 0.9643 | 0.9953 | 0.9793 | 0.7811 | 0.8850 | 0.2281 | 0.9562 | 0.9061 | 0.7914 | 1.0 | 1.0 | 0.9837 | 0.9846 | 0.9971 | 0.9910 | 0.9906 | 0.4349 | 0.8126 | 0.7679 | 0.9880 | 0.9991 | 0.9777 | 0.9684 | 0.9721 | 1.0 | 0.9635 | 0.9330 | 1.0 | 0.9910 | 1.0 | 0.9918 | 0.9962 | 0.9477 | 0.9546 | 0.9892 | 0.9876 | 0.9976 | 0.9893 | 0.9873 | 0.9889 | 1.0 | 0.9953 | 0.9975 | 1.0 | 1.0 | 0.9873 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1