# -*- coding: utf-8 -*- """xlm-roberta-large.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/18YiC93vkjig-o550pHFJSB3bCQ7rhb4M """ !pip install transformers datasets seqeval huggingface_hub # Standard library imports import os # Provides functions for interacting with the operating system import warnings # Used to handle or suppress warnings import numpy as np # Essential for numerical operations and array manipulation import torch # PyTorch library for tensor computations and model handling import ast # Used for safe evaluation of strings to Python objects (e.g., parsing tokens) # Hugging Face and Transformers imports from datasets import load_dataset # Loads datasets for model training and evaluation from transformers import ( AutoTokenizer, # Initializes a tokenizer from a pre-trained model DataCollatorForTokenClassification, # Handles padding and formatting of token classification data TrainingArguments, # Defines training parameters like batch size and learning rate Trainer, # High-level API for managing training and evaluation AutoModelForTokenClassification, # Loads a pre-trained model for token classification tasks get_linear_schedule_with_warmup, # Learning rate scheduler for gradual warm-up and linear decay EarlyStoppingCallback # Callback to stop training if validation performance plateaus ) # Hugging Face Hub from huggingface_hub import login # Allows logging in to Hugging Face Hub to upload models # seqeval metrics for NER evaluation from seqeval.metrics import precision_score, recall_score, f1_score, classification_report # Provides precision, recall, F1-score, and classification report for evaluating NER model performance # Log in to Hugging Face Hub login(token="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") # Disable WandB (Weights & Biases) logging to avoid unwanted log outputs during training os.environ["WANDB_DISABLED"] = "true" # Suppress warning messages to keep output clean, especially during training and evaluation warnings.filterwarnings("ignore") # Load the Azerbaijani NER dataset from Hugging Face dataset = load_dataset("LocalDoc/azerbaijani-ner-dataset") print(dataset) # Display dataset structure (e.g., train/validation splits) # Preprocessing function to format tokens and NER tags correctly def preprocess_example(example): try: # Convert string of tokens to a list and parse NER tags to integers example["tokens"] = ast.literal_eval(example["tokens"]) example["ner_tags"] = list(map(int, ast.literal_eval(example["ner_tags"]))) except (ValueError, SyntaxError) as e: # Skip and log malformed examples, ensuring error resilience print(f"Skipping malformed example: {example['index']} due to error: {e}") example["tokens"] = [] example["ner_tags"] = [] return example # Apply preprocessing to each dataset entry, ensuring consistent formatting dataset = dataset.map(preprocess_example) # Initialize the tokenizer for multilingual NER using xlm-roberta-large tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large") # Function to tokenize input and align labels with tokenized words def tokenize_and_align_labels(example): # Tokenize the sentence while preserving word boundaries for correct NER tag alignment tokenized_inputs = tokenizer( example["tokens"], # List of words (tokens) in the sentence truncation=True, # Truncate sentences longer than max_length is_split_into_words=True, # Specify that input is a list of words padding="max_length", # Pad to maximum sequence length max_length=128, # Set the maximum sequence length to 128 tokens ) labels = [] # List to store aligned NER labels word_ids = tokenized_inputs.word_ids() # Get word IDs for each token previous_word_idx = None # Initialize previous word index for tracking # Loop through word indices to align NER tags with subword tokens for word_idx in word_ids: if word_idx is None: labels.append(-100) # Set padding token labels to -100 (ignored in loss) elif word_idx != previous_word_idx: # Assign the label from example's NER tags if word index matches labels.append(example["ner_tags"][word_idx] if word_idx < len(example["ner_tags"]) else -100) else: labels.append(-100) # Label subword tokens with -100 to avoid redundant labels previous_word_idx = word_idx # Update previous word index tokenized_inputs["labels"] = labels # Add labels to tokenized inputs return tokenized_inputs # Apply tokenization and label alignment function to the dataset tokenized_datasets = dataset.map(tokenize_and_align_labels, batched=False) # Create a 90-10 split of the dataset for training and validation tokenized_datasets = tokenized_datasets["train"].train_test_split(test_size=0.1) print(tokenized_datasets) # Output structure of split datasets # Define a list of entity labels for NER tagging with B- (beginning) and I- (inside) markers label_list = [ "O", # Outside of a named entity "B-PERSON", "I-PERSON", # Person name (e.g., "John" in "John Doe") "B-LOCATION", "I-LOCATION", # Geographical location (e.g., "Paris") "B-ORGANISATION", "I-ORGANISATION", # Organization name (e.g., "UNICEF") "B-DATE", "I-DATE", # Date entity (e.g., "2024-11-05") "B-TIME", "I-TIME", # Time (e.g., "12:00 PM") "B-MONEY", "I-MONEY", # Monetary values (e.g., "$20") "B-PERCENTAGE", "I-PERCENTAGE", # Percentage values (e.g., "20%") "B-FACILITY", "I-FACILITY", # Physical facilities (e.g., "Airport") "B-PRODUCT", "I-PRODUCT", # Product names (e.g., "iPhone") "B-EVENT", "I-EVENT", # Named events (e.g., "Olympics") "B-ART", "I-ART", # Works of art (e.g., "Mona Lisa") "B-LAW", "I-LAW", # Laws and legal documents (e.g., "Article 50") "B-LANGUAGE", "I-LANGUAGE", # Languages (e.g., "Azerbaijani") "B-GPE", "I-GPE", # Geopolitical entities (e.g., "Europe") "B-NORP", "I-NORP", # Nationalities, religious groups, political groups "B-ORDINAL", "I-ORDINAL", # Ordinal indicators (e.g., "first", "second") "B-CARDINAL", "I-CARDINAL", # Cardinal numbers (e.g., "three") "B-DISEASE", "I-DISEASE", # Diseases (e.g., "COVID-19") "B-CONTACT", "I-CONTACT", # Contact info (e.g., email or phone number) "B-ADAGE", "I-ADAGE", # Common sayings or adages "B-QUANTITY", "I-QUANTITY", # Quantities (e.g., "5 km") "B-MISCELLANEOUS", "I-MISCELLANEOUS", # Miscellaneous entities not fitting other categories "B-POSITION", "I-POSITION", # Job titles or positions (e.g., "CEO") "B-PROJECT", "I-PROJECT" # Project names (e.g., "Project Apollo") ] # Initialize a data collator to handle padding and formatting for token classification data_collator = DataCollatorForTokenClassification(tokenizer) # Load a pre-trained model for token classification, adapted for NER tasks model = AutoModelForTokenClassification.from_pretrained( "xlm-roberta-large", # Base model (multilingual XLM-RoBERTa) for NER num_labels=len(label_list) # Set the number of output labels to match NER categories ) # Define a function to compute evaluation metrics for the model's predictions def compute_metrics(p): predictions, labels = p # Unpack predictions and true labels from the input # Convert logits to predicted label indices by taking the argmax along the last axis predictions = np.argmax(predictions, axis=2) # Filter out special padding labels (-100) and convert indices to label names true_labels = [[label_list[l] for l in label if l != -100] for label in labels] true_predictions = [ [label_list[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] # Print a detailed classification report for each label category print(classification_report(true_labels, true_predictions)) # Calculate and return key evaluation metrics return { # Precision measures the accuracy of predicted positive instances # Important in NER to ensure entity predictions are correct and reduce false positives. "precision": precision_score(true_labels, true_predictions), # Recall measures the model's ability to capture all relevant entities # Essential in NER to ensure the model captures all entities, reducing false negatives. "recall": recall_score(true_labels, true_predictions), # F1-score is the harmonic mean of precision and recall, balancing both metrics # Useful in NER for providing an overall performance measure, especially when precision and recall are both important. "f1": f1_score(true_labels, true_predictions), } # Set up training arguments for model training, defining essential training configurations training_args = TrainingArguments( output_dir="./results", # Directory to save model checkpoints and final outputs evaluation_strategy="epoch", # Evaluate model on the validation set at the end of each epoch save_strategy="epoch", # Save model checkpoints at the end of each epoch learning_rate=2e-5, # Set a low learning rate to ensure stable training for fine-tuning per_device_train_batch_size=128, # Number of examples per batch during training, balancing speed and memory per_device_eval_batch_size=128, # Number of examples per batch during evaluation num_train_epochs=12, # Number of full training passes over the dataset weight_decay=0.005, # Regularization term to prevent overfitting by penalizing large weights fp16=True, # Use 16-bit floating point for faster and memory-efficient training logging_dir='./logs', # Directory to store training logs save_total_limit=2, # Keep only the 2 latest model checkpoints to save storage space load_best_model_at_end=True, # Load the best model based on metrics at the end of training metric_for_best_model="f1", # Use F1-score to determine the best model checkpoint report_to="none" # Disable reporting to external services (useful in local runs) ) # Initialize the Trainer class to manage the training loop with all necessary components trainer = Trainer( model=model, # The pre-trained model to be fine-tuned args=training_args, # Training configuration parameters defined in TrainingArguments train_dataset=tokenized_datasets["train"], # Tokenized training dataset eval_dataset=tokenized_datasets["test"], # Tokenized validation dataset tokenizer=tokenizer, # Tokenizer used for processing input text data_collator=data_collator, # Data collator for padding and batching during training compute_metrics=compute_metrics, # Function to calculate evaluation metrics like precision, recall, F1 callbacks=[EarlyStoppingCallback(early_stopping_patience=5)] # Stop training early if validation metrics don't improve for 2 epochs ) # Begin the training process and capture the training metrics training_metrics = trainer.train() # Evaluate the model on the validation set after training eval_results = trainer.evaluate() # Print evaluation results, including precision, recall, and F1-score print(eval_results) # Define the directory where the trained model and tokenizer will be saved save_directory = "./xlm-roberta-large" # Save the trained model to the specified directory model.save_pretrained(save_directory) # Save the tokenizer to the same directory for compatibility with the model tokenizer.save_pretrained(save_directory) from transformers import pipeline # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(save_directory) model = AutoModelForTokenClassification.from_pretrained(save_directory) # Initialize the NER pipeline device = 0 if torch.cuda.is_available() else -1 nlp_ner = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple", device=device) label_mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list) if label != "O"} def evaluate_model(test_texts, true_labels): predictions = [] for i, text in enumerate(test_texts): pred_entities = nlp_ner(text) pred_labels = [label_mapping.get(entity["entity_group"], "O") for entity in pred_entities if entity["entity_group"] in label_mapping] if len(pred_labels) != len(true_labels[i]): print(f"Warning: Inconsistent number of entities in sample {i+1}. Adjusting predicted entities.") pred_labels = pred_labels[:len(true_labels[i])] predictions.append(pred_labels) if all(len(true) == len(pred) for true, pred in zip(true_labels, predictions)): precision = precision_score(true_labels, predictions) recall = recall_score(true_labels, predictions) f1 = f1_score(true_labels, predictions) print("Precision:", precision) print("Recall:", recall) print("F1-Score:", f1) print(classification_report(true_labels, predictions)) else: print("Error: Could not align all samples correctly for evaluation.") test_texts = ["Shahla Khuduyeva və Pasha Sığorta şirkəti haqqında məlumat."] true_labels = [["B-PERSON", "B-ORGANISATION"]] evaluate_model(test_texts, true_labels)