--- tags: - merge - mergekit - lazymergekit - maywell/PiVoT-0.1-Evil-a - mlabonne/NeuralOmniBeagle-7B-v2 base_model: - maywell/PiVoT-0.1-Evil-a - mlabonne/NeuralOmniBeagle-7B-v2 --- # Konstanta-7B Konstanta-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [maywell/PiVoT-0.1-Evil-a](https://huggingface.co/maywell/PiVoT-0.1-Evil-a) * [mlabonne/NeuralOmniBeagle-7B-v2](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B-v2) ## 🧩 Configuration ```yaml merge_method: dare_ties dtype: bfloat16 parameters: int8_mask: true base_model: SanjiWatsuki/Kunoichi-DPO-v2-7B models: - model: SanjiWatsuki/Kunoichi-DPO-v2-7B - model: maywell/PiVoT-0.1-Evil-a parameters: density: 0.65 weight: 0.15 - model: mlabonne/NeuralOmniBeagle-7B-v2 parameters: density: 0.85 weight: 0.45 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Inv/Konstanta-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```