--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: first_try results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.8417412530512612 --- # first_try This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4506 - Accuracy: 0.8417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 0.3038 | 1.0 | 12272 | 0.4950 | 0.8238 | OrderedDict([(, {0: 256, 1: 256, 2: 192, 3: 320, 4: 192, 5: 384, 6: 128, 7: 256, 8: 256, 9: 256, 10: 192, 11: 256, 12: 1542, 13: 1611, 14: 1891, 15: 1877, 16: 1825, 17: 1790, 18: 1678, 19: 1544, 20: 1223, 21: 628, 22: 345, 23: 213})]) | | 0.3038 | 1.0 | 12272 | 0.4592 | 0.8385 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | | 0.1683 | 2.0 | 24544 | 0.4678 | 0.8326 | OrderedDict([(, {0: 256, 1: 256, 2: 192, 3: 320, 4: 192, 5: 384, 6: 128, 7: 256, 8: 256, 9: 256, 10: 192, 11: 256, 12: 1542, 13: 1611, 14: 1891, 15: 1877, 16: 1825, 17: 1790, 18: 1678, 19: 1544, 20: 1223, 21: 628, 22: 345, 23: 213})]) | | 0.1683 | 2.0 | 24544 | 0.4285 | 0.8479 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | | 0.1132 | 3.0 | 36816 | 0.4638 | 0.8381 | OrderedDict([(, {0: 256, 1: 256, 2: 192, 3: 320, 4: 192, 5: 384, 6: 128, 7: 256, 8: 256, 9: 256, 10: 192, 11: 256, 12: 1542, 13: 1611, 14: 1891, 15: 1877, 16: 1825, 17: 1790, 18: 1678, 19: 1544, 20: 1223, 21: 628, 22: 345, 23: 213})]) | | 0.1132 | 3.0 | 36816 | 0.4231 | 0.8492 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | | 0.0894 | 4.0 | 49088 | 0.4678 | 0.8383 | OrderedDict([(, {0: 256, 1: 256, 2: 192, 3: 320, 4: 192, 5: 384, 6: 128, 7: 256, 8: 256, 9: 256, 10: 192, 11: 256, 12: 1542, 13: 1611, 14: 1891, 15: 1877, 16: 1825, 17: 1790, 18: 1678, 19: 1544, 20: 1223, 21: 628, 22: 345, 23: 213})]) | | 0.0894 | 4.0 | 49088 | 0.4261 | 0.8497 | OrderedDict([(, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | ### Framework versions - Transformers 4.29.1 - Pytorch 1.12.1 - Datasets 2.13.1 - Tokenizers 0.13.3