--- language: - en license: mit tags: - generated_from_trainer datasets: - nyu-mll/glue metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-mrpc results: - task: type: text-classification name: Text Classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - type: accuracy value: 0.8578431372549019 name: Accuracy - type: f1 value: 0.901023890784983 name: F1 --- # xlm-roberta-base-mrpc This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.3703 - Accuracy: 0.8578 - F1: 0.9010 - Combined Score: 0.8794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu102 - Datasets 2.1.0 - Tokenizers 0.11.6