--- tags: - question-answering - bert --- # Model Card for dynamic_tinybert # Model Details ## Model Description Dynamic-TinyBERT: Boost TinyBERT’s Inference Efficiency by Dynamic Sequence Length - **Developed by:** Intel - **Shared by [Optional]:** Intel - **Model type:** Question Answering - **Language(s) (NLP):** More information needed - **License:** More information needed - **Parent Model:** BERT - **Resources for more information:** - [Associated Paper](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf) # Uses ## Direct Use This model can be used for the task of question answering. ## Downstream Use [Optional] More information needed. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The model authors note in the [associated paper](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf): > All our experiments are evaluated on the challenging question-answering benchmark SQuAD1.1 [11]. ## Training Procedure ### Preprocessing The model authors note in the [associated paper](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf): > We start with a pre-trained general-TinyBERT student, which was trained to learn the general knowledge of BERT using the general-distillation method presented by TinyBERT. We perform transformer distillation from a fine- tuned BERT teacher to the student, following the same training steps used in the original TinyBERT: (1) **intermediate-layer distillation (ID)** — learning the knowledge residing in the hidden states and attentions matrices, and (2) **prediction-layer distillation (PD)** — fitting the predictions of the teacher. ### Speeds, Sizes, Times The model authors note in the [associated paper](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf): >For our Dynamic-TinyBERT model we use the architecture of TinyBERT6L: a small BERT model with 6 layers, a hidden size of 768, a feed forward size of 3072 and 12 heads. # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors More information needed ### Metrics More information needed ## Results The model authors note in the [associated paper](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf): | Model | Max F1 (full model) | Best Speedup within BERT-1% | |------------------|---------------------|-----------------------------| | Dynamic-TinyBERT | 88.71 | 3.3x | # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** Titan GPU - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed. # Citation **BibTeX:** ```bibtex @misc{https://doi.org/10.48550/arxiv.2111.09645, doi = {10.48550/ARXIV.2111.09645}, url = {https://arxiv.org/abs/2111.09645}, author = {Guskin, Shira and Wasserblat, Moshe and Ding, Ke and Kim, Gyuwan}, keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Dynamic-TinyBERT: Boost TinyBERT's Inference Efficiency by Dynamic Sequence Length}, publisher = {arXiv}, year = {2021}, ``` **APA:** More information needed # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Intel in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model.
Click to expand ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("Intel/dynamic_tinybert") model = AutoModelForQuestionAnswering.from_pretrained("Intel/dynamic_tinybert") ```