Edit model card

INT8 bert-base-uncased-finetuned-swag

Post-training static quantization

This is an INT8 PyTorch model quantized with huggingface/optimum-intel through the usage of Intel® Neural Compressor. The original fp32 model comes from the fine-tuned model thyagosme/bert-base-uncased-finetuned-swag.

The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104.

The linear modules bert.encoder.layer.2.output.dense, bert.encoder.layer.5.intermediate.dense, bert.encoder.layer.9.output.dense, bert.encoder.layer.10.output.dense fall back to fp32 to meet the 1% relative accuracy loss.

Test result

Accuracy (eval-accuracy) 0.7838 0.7915
Model size (MB) 133 418

Load with optimum:

from optimum.intel.neural_compressor.quantization import IncQuantizedModelForMultipleChoice
int8_model = IncQuantizedModelForMultipleChoice.from_pretrained(
Downloads last month

Dataset used to train Intel/bert-base-uncased-finetuned-swag-int8-static

Evaluation results