merge This is a merge of pre-trained language models created using mergekit. Merge Details Merge Method This model was merged using the SLERP merge method. Models Merged The following models were included in the merge: rombodawg/Rombos-LLM-V2.5-Qwen-32b fblgit/TheBeagle-v2beta-32B-MGS Configuration The following YAML configuration was used to produce this model: slices: - sources: - model: fblgit/TheBeagle-v2beta-32B-MGS layer_range: - 0 - 64 - model: rombodawg/Rombos-LLM-V2.5-Qwen-32b layer_range: - 0 - 64 merge_method: slerp base_model: rombodawg/Rombos-LLM-V2.5-Qwen-32b parameters: t: - filter: self_attn value: - 0 - 0.5 - 0.3 - 0.7 - 1 - filter: mlp value: - 1 - 0.5 - 0.7 - 0.3 - 0 - value: 0.5 dtype: bfloat16 --- base_model: mergekit-community/mergekit-slerp-uavuhik library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Insanelycool/mergekit-slerp-uavuhik-Q8_0-GGUF This model was converted to GGUF format from [`mergekit-community/mergekit-slerp-uavuhik`](https://huggingface.co/mergekit-community/mergekit-slerp-uavuhik) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/mergekit-community/mergekit-slerp-uavuhik) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Insanelycool/mergekit-slerp-uavuhik-Q8_0-GGUF --hf-file mergekit-slerp-uavuhik-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Insanelycool/mergekit-slerp-uavuhik-Q8_0-GGUF --hf-file mergekit-slerp-uavuhik-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Insanelycool/mergekit-slerp-uavuhik-Q8_0-GGUF --hf-file mergekit-slerp-uavuhik-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Insanelycool/mergekit-slerp-uavuhik-Q8_0-GGUF --hf-file mergekit-slerp-uavuhik-q8_0.gguf -c 2048 ```