--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: AudioCourseU4-MusicClassification results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # AudioCourseU4-MusicClassification This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8804 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7993 | 1.0 | 225 | 1.5770 | 0.4 | | 1.0767 | 2.0 | 450 | 0.9900 | 0.7 | | 0.8292 | 3.0 | 675 | 0.8554 | 0.73 | | 0.5892 | 4.0 | 900 | 0.8991 | 0.74 | | 0.1584 | 5.0 | 1125 | 0.8473 | 0.78 | | 0.0082 | 6.0 | 1350 | 0.9282 | 0.8 | | 0.0094 | 7.0 | 1575 | 1.0036 | 0.82 | | 0.0581 | 8.0 | 1800 | 1.2186 | 0.82 | | 0.0021 | 9.0 | 2025 | 1.0192 | 0.83 | | 0.0011 | 10.0 | 2250 | 0.8804 | 0.88 | | 0.002 | 11.0 | 2475 | 1.1519 | 0.83 | | 0.0009 | 12.0 | 2700 | 0.9439 | 0.87 | | 0.0006 | 13.0 | 2925 | 1.1227 | 0.84 | | 0.0008 | 14.0 | 3150 | 1.0344 | 0.86 | | 0.0006 | 15.0 | 3375 | 1.0209 | 0.86 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3