--- language: - es tags: - audio # Example: audio - automatic-speech-recognition # Example: datasets: - multilingual_librispeech metrics: - eval_wer: 0.073 model-index: - name: wav2vec2-spanish-multilibrispeech results: - task: type: automatic-speech-recognition # Required. Example: automatic-speech-recognition name: Speech Recognition # Optional. Example: Speech Recognition dataset: type: multilingual_librispeech # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: multilingual_librispeech es # Required. Example: Common Voice zh-CN args: es # Optional. Example: zh-CN metrics: - type: wer value: 0.073 name: eval_wer - type: loss value: 0.086 name: eval_loss --- This is a model for automatic speech recognition in spanish, by using the Spanish portion of [multilingual_librispeech](https://huggingface.co/datasets/multilingual_librispeech) and the [pre-trained wav2vec2 multilingual from Facebook](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) For training the model, we used the same parameters as they recommend in [the paper](https://arxiv.org/abs/2006.13979). We trained for a total of 15 epochs, obtaining a final wer of 0.073. An example of how to use this model: ```python from transformers import Wav2Vec2Tokenizer, AutoModelForCTC tokenizer = Wav2Vec2Tokenizer.from_pretrained( "IIC/wav2vec2-spanish-multilibrispeech" ) model = AutoModelForCTC.from_pretrained( "IIC/wav2vec2-spanish-multilibrispeech" ) ``` ### Contributions Thanks to [@avacaondata](https://huggingface.co/avacaondata), [@alborotis](https://huggingface.co/alborotis), [@albarji](https://huggingface.co/albarji), [@Dabs](https://huggingface.co/Dabs), [@GuillemGSubies](https://huggingface.co/GuillemGSubies) for adding this model.