|
--- |
|
language: |
|
- es |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
datasets: |
|
- multilingual_librispeech |
|
|
|
metrics: |
|
- eval_wer: 0.073 |
|
|
|
model-index: |
|
- name: wav2vec2-spanish-multilibrispeech |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Speech Recognition |
|
dataset: |
|
type: multilingual_librispeech |
|
name: multilingual_librispeech es |
|
args: es |
|
metrics: |
|
- type: wer |
|
value: 0.073 |
|
name: eval_wer |
|
- type: loss |
|
value: 0.086 |
|
name: eval_loss |
|
--- |
|
|
|
This is a model for automatic speech recognition in spanish, by using the Spanish portion of [multilingual_librispeech](https://huggingface.co/datasets/multilingual_librispeech) and the [pre-trained wav2vec2 multilingual from Facebook](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) |
|
|
|
|
|
For training the model, we used the same parameters as they recommend in [the paper](https://arxiv.org/abs/2006.13979). We trained for a total of 15 epochs, obtaining a final wer of 0.073. |
|
|
|
An example of how to use this model: |
|
|
|
```python |
|
from transformers import Wav2Vec2Tokenizer, AutoModelForCTC |
|
|
|
tokenizer = Wav2Vec2Tokenizer.from_pretrained( |
|
"IIC/wav2vec2-spanish-multilibrispeech" |
|
) |
|
|
|
model = AutoModelForCTC.from_pretrained( |
|
"IIC/wav2vec2-spanish-multilibrispeech" |
|
) |
|
|
|
``` |
|
|
|
### Contributions |
|
Thanks to [@avacaondata](https://huggingface.co/avacaondata), [@alborotis](https://huggingface.co/alborotis), [@albarji](https://huggingface.co/albarji), [@Dabs](https://huggingface.co/Dabs), [@GuillemGSubies](https://huggingface.co/GuillemGSubies) for adding this model. |