metadata
language:
- es
tags:
- audio
- automatic-speech-recognition
datasets:
- multilingual_librispeech
metrics:
- eval_wer: 0.073
model-index:
- name: wav2vec2-spanish-multilibrispeech
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: multilingual_librispeech
name: multilingual_librispeech es
args: es
metrics:
- type: wer
value: 0.073
name: eval_wer
- type: loss
value: 0.086
name: eval_loss
This is a model for automatic speech recognition in spanish, by using the Spanish portion of multilingual_librispeech and the pre-trained wav2vec2 multilingual from Facebook
For training the model, we used the same parameters as they recommend in the paper. We trained for a total of 15 epochs, obtaining a final wer of 0.073.
An example of how to use this model:
from transformers import Wav2Vec2Tokenizer, AutoModelForCTC
tokenizer = Wav2Vec2Tokenizer.from_pretrained(
"IIC/wav2vec2-spanish-multilibrispeech"
)
model = AutoModelForCTC.from_pretrained(
"IIC/wav2vec2-spanish-multilibrispeech"
)
Contributions
Thanks to @avacaondata, @alborotis, @albarji, @Dabs, @GuillemGSubies for adding this model.