--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain" datasets: - IDQO/autotrain-data-liantis-profession-matcher-v08112023 co2_eq_emissions: emissions: 3.4066803387941684 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 100063147551 - CO2 Emissions (in grams): 3.4067 ## Validation Metrics - Loss: 0.604 - Accuracy: 0.885 - Macro F1: 0.805 - Micro F1: 0.885 - Weighted F1: 0.871 - Macro Precision: 0.816 - Micro Precision: 0.885 - Weighted Precision: 0.868 - Macro Recall: 0.811 - Micro Recall: 0.885 - Weighted Recall: 0.885 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/IDQO/autotrain-liantis-profession-matcher-v08112023-100063147551 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("IDQO/autotrain-liantis-profession-matcher-v08112023-100063147551", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("IDQO/autotrain-liantis-profession-matcher-v08112023-100063147551", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```