--- language: - zh license: apache-2.0 # inference: false # inference: # parameters: tags: - question-generation - qg - SQuAD - nlg - bart-base datasets: - chinesesquad metrics: - bleu - rouge - f1 - meteor - bleu_score --- # Randeng-BART-139M-QG-Chinese - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/dev_yangqi/fengshen/examples/bart_qg) - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/) ## 简介 Brief Introduction 善于处理问题生成任务的中文版 BART-base 模型。 Good at solving question generation tasks Bart-base Model (Chinese version). ## 模型分类 Model Taxonomy | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | 通用 General | 自然语言转换 NLT | 燃灯 Randeng | BART | 139M | 问题生成任务-中文 QuestionGeneration-Chinese | ## 模型信息 Model Information 基于[IDEA-CCNL/Randeng-BART-139M](https://huggingface.co/IDEA-CCNL/Randeng-BART-139M),我们在 [ChineseSQuAD](https://github.com/pluto-junzeng/ChineseSquad) 数据集上微调了问题生成任务版本。该数据集翻译了部分SQuAD数据集,包含约 67k 有答案的训练样本。 Based on [IDEA-CCNL/Randeng-BART-139M](https://huggingface.co/IDEA-CCNL/Randeng-BART-139M), we fine-tuned a question generation version on [ChineseSQuAD](https://github.com/pluto-junzeng/ChineseSquad) datasets. The dataset is translated from SQuAD 2.0, with around 67k samples with answer. ### 下游效果 Performance | Dataset | Size | BLEU-4 | METEOR | ROUGE-L| | ------------ | ----- | -------- |--------- | ---------- | | ChineseSQuAD | 139M | 22.17 | 40.38 | 38.17 | ## 使用 Usage ```python from transformers import AutoTokenizer, BartForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Randeng-BART-139M-QG-Chinese",additional_special_tokens=[""]) model = BartForConditionalGeneration.from_pretrained("IDEA-CCNL/Randeng-BART-139M-QG-Chinese") context = "知识:1939年9月1日德国入侵波兰后,第二次世界大战开始,华沙一直被保卫到9月27日。波兰中部,包括华沙,都在德国纳粹殖民地政府总政府的统治下。所有的高等教育机构都立即关闭,华沙的犹太人口——几十万,约占城市的 ——全部涌入华沙的贫民区。回答:30%" inputs = tokenizer.encode_plus( context, max_length=448, padding="max_length", truncation=True, return_tensors='pt' ) out = model.generate( input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], do_sample=True, num_beams=5, max_length=64, top_p = 0.9, ) print(pred = tokenizer.batch_decode(out,clean_up_tokenization_spaces=True, skip_special_tokens=True)[0]) # 问题:华沙的犹太人口占城市的百分之多少? ``` ## 引用 Citation 如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2210.08590): If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2210.08590): ```text @article{unimc, author = {Ping Yang and Junjie Wang and Ruyi Gan and Xinyu Zhu and Lin Zhang and Ziwei Wu and Xinyu Gao and Jiaxing Zhang and Tetsuya Sakai}, title = {Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective}, journal = {CoRR}, volume = {abs/2210.08590}, year = {2022} } ``` 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```