|
--- |
|
base_model: bert-base-chinese |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: Hzmin9/my_awesome_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# Hzmin9/my_awesome_model |
|
|
|
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.1928 |
|
- Train Accuracy: 0.6725 |
|
- Validation Loss: 1.3273 |
|
- Validation Accuracy: 0.6725 |
|
- Epoch: 9 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |
|
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:| |
|
| 2.0541 | 0.595 | 1.5183 | 0.5950 | 0 | |
|
| 1.3021 | 0.6125 | 1.2977 | 0.6125 | 1 | |
|
| 0.9285 | 0.6625 | 1.2059 | 0.6625 | 2 | |
|
| 0.7071 | 0.6625 | 1.1796 | 0.6625 | 3 | |
|
| 0.5354 | 0.6525 | 1.2179 | 0.6525 | 4 | |
|
| 0.4165 | 0.6825 | 1.1801 | 0.6825 | 5 | |
|
| 0.3302 | 0.6675 | 1.3224 | 0.6675 | 6 | |
|
| 0.2655 | 0.6725 | 1.3056 | 0.6725 | 7 | |
|
| 0.2195 | 0.6675 | 1.3366 | 0.6675 | 8 | |
|
| 0.1928 | 0.6725 | 1.3273 | 0.6725 | 9 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0 |
|
- TensorFlow 2.13.0 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|