########################################################################### # Computer vision - Binary neural networks demo software by HyperbeeAI. # # Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. main@shallow.ai # ########################################################################### import torch, sys, time import torch.nn as nn import torch.optim as optim # bizden import layers, models, dataloader from library.utils import compute_batch_accuracy, compute_set_accuracy bs = 100; train_loader, test_loader = dataloader.load_cifar100(batch_size=bs, num_workers=6, shuffle=False, act_8b_mode=False); device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = models.maxim_nas() model = model.to(device) # first, ftp2qat but it's Ap sq = 0.985 layer_attribute = getattr(model, 'conv1_1') layer_attribute.configure_layer_base(weight_bits=8, bias_bits=8, shift_quantile=sq) layer_attribute.mode_fpt2qat('qat'); setattr(model, 'conv1_1', layer_attribute) layer_attribute = getattr(model, 'conv1_2') layer_attribute.configure_layer_base(weight_bits=2, bias_bits=8, shift_quantile=sq) layer_attribute.mode_fpt2qat('qat'); setattr(model, 'conv1_2', layer_attribute) layer_attribute = getattr(model, 'conv1_3') layer_attribute.configure_layer_base(weight_bits=2, bias_bits=8, shift_quantile=sq) layer_attribute.mode_fpt2qat('qat'); setattr(model, 'conv1_3', layer_attribute) layer_attribute = getattr(model, 'conv2_1') layer_attribute.configure_layer_base(weight_bits=2, bias_bits=8, shift_quantile=sq) layer_attribute.mode_fpt2qat('qat_ap'); setattr(model, 'conv2_1', layer_attribute) layer_attribute = getattr(model, 'conv2_2') layer_attribute.configure_layer_base(weight_bits=2, bias_bits=8, shift_quantile=sq) layer_attribute.mode_fpt2qat('qat_ap'); setattr(model, 'conv2_2', layer_attribute) layer_attribute = getattr(model, 'conv3_1') layer_attribute.configure_layer_base(weight_bits=2, bias_bits=8, shift_quantile=sq) layer_attribute.mode_fpt2qat('qat_ap'); setattr(model, 'conv3_1', layer_attribute) layer_attribute = getattr(model, 'conv3_2') layer_attribute.configure_layer_base(weight_bits=2, bias_bits=8, shift_quantile=sq) layer_attribute.mode_fpt2qat('qat_ap'); setattr(model, 'conv3_2', layer_attribute) layer_attribute = getattr(model, 'conv4_1') layer_attribute.configure_layer_base(weight_bits=2, bias_bits=8, shift_quantile=sq) layer_attribute.mode_fpt2qat('qat_ap'); setattr(model, 'conv4_1', layer_attribute) layer_attribute = getattr(model, 'conv4_2') layer_attribute.configure_layer_base(weight_bits=2, bias_bits=8, shift_quantile=sq) layer_attribute.mode_fpt2qat('qat'); setattr(model, 'conv4_2', layer_attribute) layer_attribute = getattr(model, 'conv5_1') layer_attribute.configure_layer_base(weight_bits=2, bias_bits=8, shift_quantile=sq) layer_attribute.mode_fpt2qat('qat'); setattr(model, 'conv5_1', layer_attribute) layer_attribute = getattr(model, 'fc') layer_attribute.configure_layer_base(weight_bits=8, bias_bits=8, shift_quantile=sq) layer_attribute.mode_fpt2qat('qat'); setattr(model, 'fc', layer_attribute) model.to(device) # somehow new parameters are left out, so they need a reload to the GPU ######################################################################################### # then, load trained checkpoint checkpoint = torch.load('training_checkpoint.pth.tar'); model.load_state_dict(checkpoint['state_dict']) print('') print('Computing test set accuracy, training checkpoint') test_acc = compute_set_accuracy(model, test_loader) print('') print('Test accuracy:', test_acc*100.0) print('') train_loader, test_loader = dataloader.load_cifar100(batch_size=bs, num_workers=6, shuffle=False, act_8b_mode=True); # then, qat2hw model = model.to(device) for layer_string in dir(model): layer_attribute = getattr(model, layer_string) if isinstance(layer_attribute, layers.shallow_base_layer): print('Generating HW parameters for:', layer_string) if(layer_attribute.mode == 'qat'): layer_attribute.mode_qat2hw('eval'); elif(layer_attribute.mode == 'qat_ap'): layer_attribute.mode_qat_ap2hw('eval'); setattr(model, layer_string, layer_attribute) model.to(device) # somehow new parameters are left out, so they need a reload print('') print('Computing test set accuracy, hardware checkpoint') test_acc = compute_set_accuracy(model, test_loader) torch.save({ 'epoch': 123456789, 'extras': {'best epoch':123456789, 'best_top1':100*test_acc.cpu().numpy(), 'clipping_method':'MAX_BIT_SHIFT', 'current_top1':100*test_acc.cpu().numpy()}, 'state_dict': model.state_dict(), 'arch': 'ai85nascifarnet' }, 'hardware_checkpoint.pth.tar') print('') print('Test accuracy:', test_acc*100.0)