--- license: apache-2.0 model-index: - name: Tulpar-7b-v2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.49 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HyperbeeAI/Tulpar-7b-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.89 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HyperbeeAI/Tulpar-7b-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.02 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HyperbeeAI/Tulpar-7b-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.65 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HyperbeeAI/Tulpar-7b-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.48 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HyperbeeAI/Tulpar-7b-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HyperbeeAI/Tulpar-7b-v2 name: Open LLM Leaderboard ---
# Model Description Tulpar-7b is a Mistral-7b-based model trained by HyperbeeAI. Training is done on a filtered and preprocessed instruction finetuning dataset that includes GPT-4 generated and generally curated datasets like Airoboros and Platypus. # Example Usage Loading the model: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("HyperbeeAI/Tulpar-7b-v0") model = AutoModelForCausalLM.from_pretrained("HyperbeeAI/Tulpar-7b-v0", device_map="auto") ``` You can run inference with both of the following prompts: ```python input_text="What is deep learning?" prompt = f"### User: {input_text}\n\n### Assistant:\n" inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=512) print(tokenizer.decode(output[0])) ``` ```python input_text="What is deep learning?" prompt = f"Question: {input_text}\n\nAnswer:" inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=512) print(tokenizer.decode(output[0])) ``` or use ChatML format. # Ethical Considerations and Limitations Tulpar is a technology with potential risks and limitations. This model is finetuned only in English and all language-related scenarios are not covered. As HyperbeeAI, we neither guarantee ethical, accurate, unbiased, objective responses nor endorse its outputs. Before deploying this model, you are advised to make safety tests for your use case. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_HyperbeeAI__Tulpar-7b-v2) | Metric |Value| |---------------------------------|----:| |Avg. |70.36| |AI2 Reasoning Challenge (25-Shot)|67.49| |HellaSwag (10-Shot) |84.89| |MMLU (5-Shot) |63.02| |TruthfulQA (0-shot) |63.65| |Winogrande (5-shot) |79.48| |GSM8k (5-shot) |63.61|