{ "best_metric": 0.7293602228164673, "best_model_checkpoint": "experts/expert-16/checkpoint-6200", "epoch": 2.091254752851711, "global_step": 6600, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.0, "learning_rate": 0.0002, "loss": 0.8339, "step": 10 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.8289, "step": 20 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.9041, "step": 30 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.8491, "step": 40 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.8151, "step": 50 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.79, "step": 60 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.7835, "step": 70 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.8831, "step": 80 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.8607, "step": 90 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7876, "step": 100 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.8031, "step": 110 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.8207, "step": 120 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.807, "step": 130 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.9262, "step": 140 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7964, "step": 150 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7879, "step": 160 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7587, "step": 170 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.8091, "step": 180 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.8615, "step": 190 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.8672, "step": 200 }, { "epoch": 0.06, "eval_loss": 0.7779108881950378, "eval_runtime": 110.9863, "eval_samples_per_second": 9.01, "eval_steps_per_second": 4.505, "step": 200 }, { "epoch": 0.06, "mmlu_eval_accuracy": 0.4744171116325413, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.45454545454545453, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.88, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.27, "mmlu_eval_accuracy_nutrition": 0.6666666666666666, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.3176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.5868234255450824, "step": 200 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.8316, "step": 210 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.8454, "step": 220 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.8434, "step": 230 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.821, "step": 240 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.7893, "step": 250 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.8242, "step": 260 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.8128, "step": 270 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.8344, "step": 280 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.8338, "step": 290 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.7981, "step": 300 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.781, "step": 310 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.7717, "step": 320 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.767, "step": 330 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.7925, "step": 340 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.8226, "step": 350 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.7912, "step": 360 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.8093, "step": 370 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.7648, "step": 380 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.7866, "step": 390 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.7976, "step": 400 }, { "epoch": 0.13, "eval_loss": 0.7656086683273315, "eval_runtime": 110.9802, "eval_samples_per_second": 9.011, "eval_steps_per_second": 4.505, "step": 400 }, { "epoch": 0.13, "mmlu_eval_accuracy": 0.47124130233512024, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.45454545454545453, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.84, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, "mmlu_eval_accuracy_professional_law": 0.3058823529411765, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.5217391304347826, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.4339068503199297, "step": 400 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.8182, "step": 410 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.8438, "step": 420 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.8184, "step": 430 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.8202, "step": 440 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.8264, "step": 450 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.8384, "step": 460 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.8372, "step": 470 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.8072, "step": 480 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.8214, "step": 490 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.814, "step": 500 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.847, "step": 510 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.8444, "step": 520 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.8096, "step": 530 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.8496, "step": 540 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.7729, "step": 550 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.7826, "step": 560 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.7478, "step": 570 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.7953, "step": 580 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.7363, "step": 590 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.7971, "step": 600 }, { "epoch": 0.19, "eval_loss": 0.7616064548492432, "eval_runtime": 110.9404, "eval_samples_per_second": 9.014, "eval_steps_per_second": 4.507, "step": 600 }, { "epoch": 0.19, "mmlu_eval_accuracy": 0.4749850916074463, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, "mmlu_eval_accuracy_high_school_government_and_politics": 0.47619047619047616, "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.84, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.26, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.41935483870967744, "mmlu_eval_accuracy_professional_law": 0.3, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.5072463768115942, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.5647042619341658, "step": 600 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.7936, "step": 610 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.7319, "step": 620 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.79, "step": 630 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.7806, "step": 640 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.8833, "step": 650 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.7711, "step": 660 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.8242, "step": 670 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.7948, "step": 680 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.7417, "step": 690 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.7275, "step": 700 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.8137, "step": 710 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.8568, "step": 720 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.802, "step": 730 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.8202, "step": 740 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.8077, "step": 750 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.814, "step": 760 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.7971, "step": 770 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.798, "step": 780 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.7806, "step": 790 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.8042, "step": 800 }, { "epoch": 0.25, "eval_loss": 0.7563537359237671, "eval_runtime": 111.023, "eval_samples_per_second": 9.007, "eval_steps_per_second": 4.504, "step": 800 }, { "epoch": 0.25, "mmlu_eval_accuracy": 0.4796267144005645, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.84, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.3, "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226, "mmlu_eval_accuracy_professional_psychology": 0.5072463768115942, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4074074074074074, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.4866046660796157, "step": 800 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.8119, "step": 810 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.8156, "step": 820 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.8288, "step": 830 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.8008, "step": 840 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.8649, "step": 850 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.8242, "step": 860 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.8255, "step": 870 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.8467, "step": 880 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.8264, "step": 890 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.7833, "step": 900 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.8338, "step": 910 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.8062, "step": 920 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.8112, "step": 930 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.7469, "step": 940 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.7897, "step": 950 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.8081, "step": 960 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.7571, "step": 970 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.8161, "step": 980 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.7759, "step": 990 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.7417, "step": 1000 }, { "epoch": 0.32, "eval_loss": 0.754473865032196, "eval_runtime": 111.0233, "eval_samples_per_second": 9.007, "eval_steps_per_second": 4.504, "step": 1000 }, { "epoch": 0.32, "mmlu_eval_accuracy": 0.4749030525395577, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.2692307692307692, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.88, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.6666666666666666, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, "mmlu_eval_accuracy_professional_law": 0.29411764705882354, "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226, "mmlu_eval_accuracy_professional_psychology": 0.5362318840579711, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.8421052631578947, "mmlu_loss": 1.596783688734468, "step": 1000 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.827, "step": 1010 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.8345, "step": 1020 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.7883, "step": 1030 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.7774, "step": 1040 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.8175, "step": 1050 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.8, "step": 1060 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.8049, "step": 1070 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.8116, "step": 1080 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.7852, "step": 1090 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.7429, "step": 1100 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.794, "step": 1110 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.7549, "step": 1120 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.7347, "step": 1130 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.7482, "step": 1140 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.7393, "step": 1150 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.8103, "step": 1160 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.8075, "step": 1170 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.7831, "step": 1180 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.792, "step": 1190 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.7955, "step": 1200 }, { "epoch": 0.38, "eval_loss": 0.7498393654823303, "eval_runtime": 110.9719, "eval_samples_per_second": 9.011, "eval_steps_per_second": 4.506, "step": 1200 }, { "epoch": 0.38, "mmlu_eval_accuracy": 0.4769718071089565, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.84, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.41935483870967744, "mmlu_eval_accuracy_professional_law": 0.3058823529411765, "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226, "mmlu_eval_accuracy_professional_psychology": 0.5217391304347826, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.6994269322166244, "step": 1200 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.7821, "step": 1210 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.8138, "step": 1220 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.717, "step": 1230 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.7406, "step": 1240 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.8031, "step": 1250 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.7974, "step": 1260 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.8001, "step": 1270 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.766, "step": 1280 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.7679, "step": 1290 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.8017, "step": 1300 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.8027, "step": 1310 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.7819, "step": 1320 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.7558, "step": 1330 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.8363, "step": 1340 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.7809, "step": 1350 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.8114, "step": 1360 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.8446, "step": 1370 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.7877, "step": 1380 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.8309, "step": 1390 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.8131, "step": 1400 }, { "epoch": 0.44, "eval_loss": 0.7500243186950684, "eval_runtime": 111.0409, "eval_samples_per_second": 9.006, "eval_steps_per_second": 4.503, "step": 1400 }, { "epoch": 0.44, "mmlu_eval_accuracy": 0.4758070782649682, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.2727272727272727, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.42857142857142855, "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.88, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5588235294117647, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.45161290322580644, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.6129032258064516, "mmlu_eval_accuracy_professional_psychology": 0.5217391304347826, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4074074074074074, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.4974891513041355, "step": 1400 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.8122, "step": 1410 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.7754, "step": 1420 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.8116, "step": 1430 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.7442, "step": 1440 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.7638, "step": 1450 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.7746, "step": 1460 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.7616, "step": 1470 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.8144, "step": 1480 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.7924, "step": 1490 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.8075, "step": 1500 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.769, "step": 1510 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.7296, "step": 1520 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.8284, "step": 1530 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.82, "step": 1540 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.7619, "step": 1550 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.7862, "step": 1560 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.7835, "step": 1570 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.7624, "step": 1580 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.8021, "step": 1590 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.793, "step": 1600 }, { "epoch": 0.51, "eval_loss": 0.7459111213684082, "eval_runtime": 111.062, "eval_samples_per_second": 9.004, "eval_steps_per_second": 4.502, "step": 1600 }, { "epoch": 0.51, "mmlu_eval_accuracy": 0.46888485292306403, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.5517241379310345, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.2727272727272727, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.88, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.41935483870967744, "mmlu_eval_accuracy_professional_law": 0.31176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.6951039852112453, "step": 1600 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.7999, "step": 1610 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.7959, "step": 1620 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.7887, "step": 1630 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.7186, "step": 1640 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.8049, "step": 1650 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.7934, "step": 1660 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.8369, "step": 1670 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.7567, "step": 1680 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.8058, "step": 1690 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.7818, "step": 1700 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.7115, "step": 1710 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.7434, "step": 1720 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.7788, "step": 1730 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.7824, "step": 1740 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.7198, "step": 1750 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.8059, "step": 1760 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.7892, "step": 1770 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.8048, "step": 1780 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.7938, "step": 1790 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.791, "step": 1800 }, { "epoch": 0.57, "eval_loss": 0.744739830493927, "eval_runtime": 111.1326, "eval_samples_per_second": 8.998, "eval_steps_per_second": 4.499, "step": 1800 }, { "epoch": 0.57, "mmlu_eval_accuracy": 0.4764276491893982, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.9, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.88, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.5882352941176471, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, "mmlu_eval_accuracy_professional_law": 0.3, "mmlu_eval_accuracy_professional_medicine": 0.6451612903225806, "mmlu_eval_accuracy_professional_psychology": 0.5072463768115942, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.7224162761754218, "step": 1800 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.7335, "step": 1810 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.7762, "step": 1820 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.75, "step": 1830 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.7875, "step": 1840 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.7749, "step": 1850 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.8516, "step": 1860 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.7729, "step": 1870 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.7664, "step": 1880 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.802, "step": 1890 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.7791, "step": 1900 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.8041, "step": 1910 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.7671, "step": 1920 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.7785, "step": 1930 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.782, "step": 1940 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.8032, "step": 1950 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.8065, "step": 1960 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.7713, "step": 1970 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.7709, "step": 1980 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.8036, "step": 1990 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.7614, "step": 2000 }, { "epoch": 0.63, "eval_loss": 0.7417653799057007, "eval_runtime": 111.078, "eval_samples_per_second": 9.003, "eval_steps_per_second": 4.501, "step": 2000 }, { "epoch": 0.63, "mmlu_eval_accuracy": 0.4656871532254676, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.47619047619047616, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.8333333333333334, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.6086956521739131, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.9230769230769231, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.09090909090909091, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.5588235294117647, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.3058823529411765, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.631578947368421, "mmlu_loss": 1.632609389158204, "step": 2000 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.8459, "step": 2010 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.7348, "step": 2020 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.811, "step": 2030 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.7091, "step": 2040 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.7715, "step": 2050 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.8017, "step": 2060 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.7734, "step": 2070 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.8292, "step": 2080 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.7873, "step": 2090 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.757, "step": 2100 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.7986, "step": 2110 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.7848, "step": 2120 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.7579, "step": 2130 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.7683, "step": 2140 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.7958, "step": 2150 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.8009, "step": 2160 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.7504, "step": 2170 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.7558, "step": 2180 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.7143, "step": 2190 }, { "epoch": 0.7, "learning_rate": 0.0002, "loss": 0.7767, "step": 2200 }, { "epoch": 0.7, "eval_loss": 0.7396783232688904, "eval_runtime": 111.0434, "eval_samples_per_second": 9.005, "eval_steps_per_second": 4.503, "step": 2200 }, { "epoch": 0.7, "mmlu_eval_accuracy": 0.48937488654796385, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.18181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.6538461538461539, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.88, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, "mmlu_eval_accuracy_professional_law": 0.3058823529411765, "mmlu_eval_accuracy_professional_medicine": 0.6129032258064516, "mmlu_eval_accuracy_professional_psychology": 0.5072463768115942, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7894736842105263, "mmlu_loss": 1.464440327400327, "step": 2200 }, { "epoch": 0.7, "learning_rate": 0.0002, "loss": 0.7848, "step": 2210 }, { "epoch": 0.7, "learning_rate": 0.0002, "loss": 0.7864, "step": 2220 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.7609, "step": 2230 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.7782, "step": 2240 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.7825, "step": 2250 }, { "epoch": 0.72, "learning_rate": 0.0002, "loss": 0.85, "step": 2260 }, { "epoch": 0.72, "learning_rate": 0.0002, "loss": 0.7802, "step": 2270 }, { "epoch": 0.72, "learning_rate": 0.0002, "loss": 0.7715, "step": 2280 }, { "epoch": 0.73, "learning_rate": 0.0002, "loss": 0.8032, "step": 2290 }, { "epoch": 0.73, "learning_rate": 0.0002, "loss": 0.854, "step": 2300 }, { "epoch": 0.73, "learning_rate": 0.0002, "loss": 0.8123, "step": 2310 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.8101, "step": 2320 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.8075, "step": 2330 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.817, "step": 2340 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.7747, "step": 2350 }, { "epoch": 0.75, "learning_rate": 0.0002, "loss": 0.8012, "step": 2360 }, { "epoch": 0.75, "learning_rate": 0.0002, "loss": 0.7893, "step": 2370 }, { "epoch": 0.75, "learning_rate": 0.0002, "loss": 0.7661, "step": 2380 }, { "epoch": 0.76, "learning_rate": 0.0002, "loss": 0.7711, "step": 2390 }, { "epoch": 0.76, "learning_rate": 0.0002, "loss": 0.8136, "step": 2400 }, { "epoch": 0.76, "eval_loss": 0.7395493388175964, "eval_runtime": 110.7923, "eval_samples_per_second": 9.026, "eval_steps_per_second": 4.513, "step": 2400 }, { "epoch": 0.76, "mmlu_eval_accuracy": 0.4873047408851529, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.2727272727272727, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.07142857142857142, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.058823529411764705, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.88, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.41935483870967744, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226, "mmlu_eval_accuracy_professional_psychology": 0.5072463768115942, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.3917097181237397, "step": 2400 }, { "epoch": 0.76, "learning_rate": 0.0002, "loss": 0.7579, "step": 2410 }, { "epoch": 0.77, "learning_rate": 0.0002, "loss": 0.8421, "step": 2420 }, { "epoch": 0.77, "learning_rate": 0.0002, "loss": 0.7957, "step": 2430 }, { "epoch": 0.77, "learning_rate": 0.0002, "loss": 0.7452, "step": 2440 }, { "epoch": 0.78, "learning_rate": 0.0002, "loss": 0.8478, "step": 2450 }, { "epoch": 0.78, "learning_rate": 0.0002, "loss": 0.8443, "step": 2460 }, { "epoch": 0.78, "learning_rate": 0.0002, "loss": 0.8409, "step": 2470 }, { "epoch": 0.79, "learning_rate": 0.0002, "loss": 0.8168, "step": 2480 }, { "epoch": 0.79, "learning_rate": 0.0002, "loss": 0.7648, "step": 2490 }, { "epoch": 0.79, "learning_rate": 0.0002, "loss": 0.7938, "step": 2500 }, { "epoch": 0.8, "learning_rate": 0.0002, "loss": 0.791, "step": 2510 }, { "epoch": 0.8, "learning_rate": 0.0002, "loss": 0.7691, "step": 2520 }, { "epoch": 0.8, "learning_rate": 0.0002, "loss": 0.7648, "step": 2530 }, { "epoch": 0.8, "learning_rate": 0.0002, "loss": 0.7575, "step": 2540 }, { "epoch": 0.81, "learning_rate": 0.0002, "loss": 0.7797, "step": 2550 }, { "epoch": 0.81, "learning_rate": 0.0002, "loss": 0.7742, "step": 2560 }, { "epoch": 0.81, "learning_rate": 0.0002, "loss": 0.8391, "step": 2570 }, { "epoch": 0.82, "learning_rate": 0.0002, "loss": 0.7746, "step": 2580 }, { "epoch": 0.82, "learning_rate": 0.0002, "loss": 0.7534, "step": 2590 }, { "epoch": 0.82, "learning_rate": 0.0002, "loss": 0.7395, "step": 2600 }, { "epoch": 0.82, "eval_loss": 0.7380212545394897, "eval_runtime": 111.0553, "eval_samples_per_second": 9.005, "eval_steps_per_second": 4.502, "step": 2600 }, { "epoch": 0.82, "mmlu_eval_accuracy": 0.4979448031756729, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.5116279069767442, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.058823529411764705, "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.9230769230769231, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.88, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.45161290322580644, "mmlu_eval_accuracy_professional_law": 0.34705882352941175, "mmlu_eval_accuracy_professional_medicine": 0.6451612903225806, "mmlu_eval_accuracy_professional_psychology": 0.5217391304347826, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.3912735815614696, "step": 2600 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.7792, "step": 2610 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.7228, "step": 2620 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.7294, "step": 2630 }, { "epoch": 0.84, "learning_rate": 0.0002, "loss": 0.6968, "step": 2640 }, { "epoch": 0.84, "learning_rate": 0.0002, "loss": 0.7463, "step": 2650 }, { "epoch": 0.84, "learning_rate": 0.0002, "loss": 0.7588, "step": 2660 }, { "epoch": 0.85, "learning_rate": 0.0002, "loss": 0.7406, "step": 2670 }, { "epoch": 0.85, "learning_rate": 0.0002, "loss": 0.7817, "step": 2680 }, { "epoch": 0.85, "learning_rate": 0.0002, "loss": 0.808, "step": 2690 }, { "epoch": 0.86, "learning_rate": 0.0002, "loss": 0.771, "step": 2700 }, { "epoch": 0.86, "learning_rate": 0.0002, "loss": 0.7678, "step": 2710 }, { "epoch": 0.86, "learning_rate": 0.0002, "loss": 0.7885, "step": 2720 }, { "epoch": 0.87, "learning_rate": 0.0002, "loss": 0.8297, "step": 2730 }, { "epoch": 0.87, "learning_rate": 0.0002, "loss": 0.8218, "step": 2740 }, { "epoch": 0.87, "learning_rate": 0.0002, "loss": 0.7742, "step": 2750 }, { "epoch": 0.87, "learning_rate": 0.0002, "loss": 0.7512, "step": 2760 }, { "epoch": 0.88, "learning_rate": 0.0002, "loss": 0.7508, "step": 2770 }, { "epoch": 0.88, "learning_rate": 0.0002, "loss": 0.7947, "step": 2780 }, { "epoch": 0.88, "learning_rate": 0.0002, "loss": 0.7399, "step": 2790 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.7589, "step": 2800 }, { "epoch": 0.89, "eval_loss": 0.7355720400810242, "eval_runtime": 110.8718, "eval_samples_per_second": 9.019, "eval_steps_per_second": 4.51, "step": 2800 }, { "epoch": 0.89, "mmlu_eval_accuracy": 0.48346048137181885, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222, "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.17647058823529413, "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.84, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.696969696969697, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.45161290322580644, "mmlu_eval_accuracy_professional_law": 0.3058823529411765, "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226, "mmlu_eval_accuracy_professional_psychology": 0.5362318840579711, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.3572583458831353, "step": 2800 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.8099, "step": 2810 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.7303, "step": 2820 }, { "epoch": 0.9, "learning_rate": 0.0002, "loss": 0.8154, "step": 2830 }, { "epoch": 0.9, "learning_rate": 0.0002, "loss": 0.8166, "step": 2840 }, { "epoch": 0.9, "learning_rate": 0.0002, "loss": 0.7425, "step": 2850 }, { "epoch": 0.91, "learning_rate": 0.0002, "loss": 0.8223, "step": 2860 }, { "epoch": 0.91, "learning_rate": 0.0002, "loss": 0.7443, "step": 2870 }, { "epoch": 0.91, "learning_rate": 0.0002, "loss": 0.7733, "step": 2880 }, { "epoch": 0.92, "learning_rate": 0.0002, "loss": 0.8092, "step": 2890 }, { "epoch": 0.92, "learning_rate": 0.0002, "loss": 0.7371, "step": 2900 }, { "epoch": 0.92, "learning_rate": 0.0002, "loss": 0.7323, "step": 2910 }, { "epoch": 0.93, "learning_rate": 0.0002, "loss": 0.7716, "step": 2920 }, { "epoch": 0.93, "learning_rate": 0.0002, "loss": 0.7824, "step": 2930 }, { "epoch": 0.93, "learning_rate": 0.0002, "loss": 0.7373, "step": 2940 }, { "epoch": 0.93, "learning_rate": 0.0002, "loss": 0.7384, "step": 2950 }, { "epoch": 0.94, "learning_rate": 0.0002, "loss": 0.7598, "step": 2960 }, { "epoch": 0.94, "learning_rate": 0.0002, "loss": 0.7211, "step": 2970 }, { "epoch": 0.94, "learning_rate": 0.0002, "loss": 0.7886, "step": 2980 }, { "epoch": 0.95, "learning_rate": 0.0002, "loss": 0.8107, "step": 2990 }, { "epoch": 0.95, "learning_rate": 0.0002, "loss": 0.8389, "step": 3000 }, { "epoch": 0.95, "eval_loss": 0.7343361377716064, "eval_runtime": 110.9061, "eval_samples_per_second": 9.017, "eval_steps_per_second": 4.508, "step": 3000 }, { "epoch": 0.95, "mmlu_eval_accuracy": 0.5003901788212859, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.5517241379310345, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.5454545454545454, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.53125, "mmlu_eval_accuracy_high_school_chemistry": 0.18181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.5, "mmlu_eval_accuracy_high_school_physics": 0.17647058823529413, "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.84, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.22, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.5714285714285714, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.35294117647058826, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.217419229584014, "step": 3000 }, { "epoch": 0.95, "learning_rate": 0.0002, "loss": 0.7964, "step": 3010 }, { "epoch": 0.96, "learning_rate": 0.0002, "loss": 0.7841, "step": 3020 }, { "epoch": 0.96, "learning_rate": 0.0002, "loss": 0.7951, "step": 3030 }, { "epoch": 0.96, "learning_rate": 0.0002, "loss": 0.7523, "step": 3040 }, { "epoch": 0.97, "learning_rate": 0.0002, "loss": 0.7729, "step": 3050 }, { "epoch": 0.97, "learning_rate": 0.0002, "loss": 0.705, "step": 3060 }, { "epoch": 0.97, "learning_rate": 0.0002, "loss": 0.7745, "step": 3070 }, { "epoch": 0.98, "learning_rate": 0.0002, "loss": 0.7992, "step": 3080 }, { "epoch": 0.98, "learning_rate": 0.0002, "loss": 0.7836, "step": 3090 }, { "epoch": 0.98, "learning_rate": 0.0002, "loss": 0.7347, "step": 3100 }, { "epoch": 0.99, "learning_rate": 0.0002, "loss": 0.7213, "step": 3110 }, { "epoch": 0.99, "learning_rate": 0.0002, "loss": 0.7427, "step": 3120 }, { "epoch": 0.99, "learning_rate": 0.0002, "loss": 0.7799, "step": 3130 }, { "epoch": 0.99, "learning_rate": 0.0002, "loss": 0.825, "step": 3140 }, { "epoch": 1.0, "learning_rate": 0.0002, "loss": 0.7389, "step": 3150 }, { "epoch": 1.0, "learning_rate": 0.0002, "loss": 0.8275, "step": 3160 }, { "epoch": 1.0, "learning_rate": 0.0002, "loss": 0.7484, "step": 3170 }, { "epoch": 1.01, "learning_rate": 0.0002, "loss": 0.7419, "step": 3180 }, { "epoch": 1.01, "learning_rate": 0.0002, "loss": 0.6543, "step": 3190 }, { "epoch": 1.01, "learning_rate": 0.0002, "loss": 0.6952, "step": 3200 }, { "epoch": 1.01, "eval_loss": 0.7377473711967468, "eval_runtime": 111.1786, "eval_samples_per_second": 8.995, "eval_steps_per_second": 4.497, "step": 3200 }, { "epoch": 1.01, "mmlu_eval_accuracy": 0.48409598343583005, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.43902439024390244, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.18181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222, "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.058823529411764705, "mmlu_eval_accuracy_high_school_psychology": 0.85, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454, "mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.88, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.6666666666666666, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.41935483870967744, "mmlu_eval_accuracy_professional_law": 0.35294117647058826, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.4613330938486144, "step": 3200 }, { "epoch": 1.02, "learning_rate": 0.0002, "loss": 0.664, "step": 3210 }, { "epoch": 1.02, "learning_rate": 0.0002, "loss": 0.6673, "step": 3220 }, { "epoch": 1.02, "learning_rate": 0.0002, "loss": 0.703, "step": 3230 }, { "epoch": 1.03, "learning_rate": 0.0002, "loss": 0.763, "step": 3240 }, { "epoch": 1.03, "learning_rate": 0.0002, "loss": 0.6587, "step": 3250 }, { "epoch": 1.03, "learning_rate": 0.0002, "loss": 0.6725, "step": 3260 }, { "epoch": 1.04, "learning_rate": 0.0002, "loss": 0.7518, "step": 3270 }, { "epoch": 1.04, "learning_rate": 0.0002, "loss": 0.7182, "step": 3280 }, { "epoch": 1.04, "learning_rate": 0.0002, "loss": 0.6655, "step": 3290 }, { "epoch": 1.05, "learning_rate": 0.0002, "loss": 0.6333, "step": 3300 }, { "epoch": 1.05, "learning_rate": 0.0002, "loss": 0.6699, "step": 3310 }, { "epoch": 1.05, "learning_rate": 0.0002, "loss": 0.659, "step": 3320 }, { "epoch": 1.06, "learning_rate": 0.0002, "loss": 0.7138, "step": 3330 }, { "epoch": 1.06, "learning_rate": 0.0002, "loss": 0.7309, "step": 3340 }, { "epoch": 1.06, "learning_rate": 0.0002, "loss": 0.7251, "step": 3350 }, { "epoch": 1.06, "learning_rate": 0.0002, "loss": 0.6712, "step": 3360 }, { "epoch": 1.07, "learning_rate": 0.0002, "loss": 0.6527, "step": 3370 }, { "epoch": 1.07, "learning_rate": 0.0002, "loss": 0.7752, "step": 3380 }, { "epoch": 1.07, "learning_rate": 0.0002, "loss": 0.6896, "step": 3390 }, { "epoch": 1.08, "learning_rate": 0.0002, "loss": 0.7441, "step": 3400 }, { "epoch": 1.08, "eval_loss": 0.7388539910316467, "eval_runtime": 111.0879, "eval_samples_per_second": 9.002, "eval_steps_per_second": 4.501, "step": 3400 }, { "epoch": 1.08, "mmlu_eval_accuracy": 0.49153955280819217, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.88, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6976744186046512, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.5217391304347826, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7894736842105263, "mmlu_loss": 1.3683368821990707, "step": 3400 }, { "epoch": 1.08, "learning_rate": 0.0002, "loss": 0.723, "step": 3410 }, { "epoch": 1.08, "learning_rate": 0.0002, "loss": 0.7545, "step": 3420 }, { "epoch": 1.09, "learning_rate": 0.0002, "loss": 0.6885, "step": 3430 }, { "epoch": 1.09, "learning_rate": 0.0002, "loss": 0.7021, "step": 3440 }, { "epoch": 1.09, "learning_rate": 0.0002, "loss": 0.7284, "step": 3450 }, { "epoch": 1.1, "learning_rate": 0.0002, "loss": 0.6811, "step": 3460 }, { "epoch": 1.1, "learning_rate": 0.0002, "loss": 0.7076, "step": 3470 }, { "epoch": 1.1, "learning_rate": 0.0002, "loss": 0.7074, "step": 3480 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.6734, "step": 3490 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.7243, "step": 3500 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.7347, "step": 3510 }, { "epoch": 1.12, "learning_rate": 0.0002, "loss": 0.6888, "step": 3520 }, { "epoch": 1.12, "learning_rate": 0.0002, "loss": 0.7332, "step": 3530 }, { "epoch": 1.12, "learning_rate": 0.0002, "loss": 0.7117, "step": 3540 }, { "epoch": 1.12, "learning_rate": 0.0002, "loss": 0.6575, "step": 3550 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.729, "step": 3560 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.6825, "step": 3570 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.6935, "step": 3580 }, { "epoch": 1.14, "learning_rate": 0.0002, "loss": 0.7004, "step": 3590 }, { "epoch": 1.14, "learning_rate": 0.0002, "loss": 0.7237, "step": 3600 }, { "epoch": 1.14, "eval_loss": 0.7381147742271423, "eval_runtime": 111.0101, "eval_samples_per_second": 9.008, "eval_steps_per_second": 4.504, "step": 3600 }, { "epoch": 1.14, "mmlu_eval_accuracy": 0.49167050353968145, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.46875, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.5116279069767442, "mmlu_eval_accuracy_high_school_mathematics": 0.13793103448275862, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.85, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.84, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.7209302325581395, "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6666666666666666, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.5362318840579711, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.8181818181818182, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7894736842105263, "mmlu_loss": 1.5044772917545806, "step": 3600 }, { "epoch": 1.14, "learning_rate": 0.0002, "loss": 0.7361, "step": 3610 }, { "epoch": 1.15, "learning_rate": 0.0002, "loss": 0.7179, "step": 3620 }, { "epoch": 1.15, "learning_rate": 0.0002, "loss": 0.7499, "step": 3630 }, { "epoch": 1.15, "learning_rate": 0.0002, "loss": 0.7319, "step": 3640 }, { "epoch": 1.16, "learning_rate": 0.0002, "loss": 0.7104, "step": 3650 }, { "epoch": 1.16, "learning_rate": 0.0002, "loss": 0.6892, "step": 3660 }, { "epoch": 1.16, "learning_rate": 0.0002, "loss": 0.7666, "step": 3670 }, { "epoch": 1.17, "learning_rate": 0.0002, "loss": 0.632, "step": 3680 }, { "epoch": 1.17, "learning_rate": 0.0002, "loss": 0.713, "step": 3690 }, { "epoch": 1.17, "learning_rate": 0.0002, "loss": 0.6958, "step": 3700 }, { "epoch": 1.18, "learning_rate": 0.0002, "loss": 0.7253, "step": 3710 }, { "epoch": 1.18, "learning_rate": 0.0002, "loss": 0.7608, "step": 3720 }, { "epoch": 1.18, "learning_rate": 0.0002, "loss": 0.7277, "step": 3730 }, { "epoch": 1.19, "learning_rate": 0.0002, "loss": 0.7346, "step": 3740 }, { "epoch": 1.19, "learning_rate": 0.0002, "loss": 0.7075, "step": 3750 }, { "epoch": 1.19, "learning_rate": 0.0002, "loss": 0.6278, "step": 3760 }, { "epoch": 1.19, "learning_rate": 0.0002, "loss": 0.7088, "step": 3770 }, { "epoch": 1.2, "learning_rate": 0.0002, "loss": 0.7667, "step": 3780 }, { "epoch": 1.2, "learning_rate": 0.0002, "loss": 0.7051, "step": 3790 }, { "epoch": 1.2, "learning_rate": 0.0002, "loss": 0.699, "step": 3800 }, { "epoch": 1.2, "eval_loss": 0.7395787239074707, "eval_runtime": 110.7949, "eval_samples_per_second": 9.026, "eval_steps_per_second": 4.513, "step": 3800 }, { "epoch": 1.2, "mmlu_eval_accuracy": 0.48410138439418055, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.18181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.9090909090909091, "mmlu_eval_accuracy_high_school_government_and_politics": 0.7619047619047619, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.058823529411764705, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226, "mmlu_eval_accuracy_professional_psychology": 0.5217391304347826, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.9090909090909091, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.414894336547615, "step": 3800 }, { "epoch": 1.21, "learning_rate": 0.0002, "loss": 0.6892, "step": 3810 }, { "epoch": 1.21, "learning_rate": 0.0002, "loss": 0.6753, "step": 3820 }, { "epoch": 1.21, "learning_rate": 0.0002, "loss": 0.6998, "step": 3830 }, { "epoch": 1.22, "learning_rate": 0.0002, "loss": 0.686, "step": 3840 }, { "epoch": 1.22, "learning_rate": 0.0002, "loss": 0.7254, "step": 3850 }, { "epoch": 1.22, "learning_rate": 0.0002, "loss": 0.6942, "step": 3860 }, { "epoch": 1.23, "learning_rate": 0.0002, "loss": 0.6729, "step": 3870 }, { "epoch": 1.23, "learning_rate": 0.0002, "loss": 0.7486, "step": 3880 }, { "epoch": 1.23, "learning_rate": 0.0002, "loss": 0.6997, "step": 3890 }, { "epoch": 1.24, "learning_rate": 0.0002, "loss": 0.7308, "step": 3900 }, { "epoch": 1.24, "learning_rate": 0.0002, "loss": 0.7214, "step": 3910 }, { "epoch": 1.24, "learning_rate": 0.0002, "loss": 0.6879, "step": 3920 }, { "epoch": 1.25, "learning_rate": 0.0002, "loss": 0.6662, "step": 3930 }, { "epoch": 1.25, "learning_rate": 0.0002, "loss": 0.7045, "step": 3940 }, { "epoch": 1.25, "learning_rate": 0.0002, "loss": 0.7908, "step": 3950 }, { "epoch": 1.25, "learning_rate": 0.0002, "loss": 0.72, "step": 3960 }, { "epoch": 1.26, "learning_rate": 0.0002, "loss": 0.6646, "step": 3970 }, { "epoch": 1.26, "learning_rate": 0.0002, "loss": 0.7421, "step": 3980 }, { "epoch": 1.26, "learning_rate": 0.0002, "loss": 0.7489, "step": 3990 }, { "epoch": 1.27, "learning_rate": 0.0002, "loss": 0.7082, "step": 4000 }, { "epoch": 1.27, "eval_loss": 0.7381725907325745, "eval_runtime": 111.1345, "eval_samples_per_second": 8.998, "eval_steps_per_second": 4.499, "step": 4000 }, { "epoch": 1.27, "mmlu_eval_accuracy": 0.48533511185669687, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.13636363636363635, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3953488372093023, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.85, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.9230769230769231, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.7093023255813954, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.696969696969697, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.45161290322580644, "mmlu_eval_accuracy_professional_law": 0.31176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226, "mmlu_eval_accuracy_professional_psychology": 0.5072463768115942, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.8181818181818182, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.3075970206652858, "step": 4000 }, { "epoch": 1.27, "learning_rate": 0.0002, "loss": 0.6578, "step": 4010 }, { "epoch": 1.27, "learning_rate": 0.0002, "loss": 0.7462, "step": 4020 }, { "epoch": 1.28, "learning_rate": 0.0002, "loss": 0.699, "step": 4030 }, { "epoch": 1.28, "learning_rate": 0.0002, "loss": 0.7144, "step": 4040 }, { "epoch": 1.28, "learning_rate": 0.0002, "loss": 0.6771, "step": 4050 }, { "epoch": 1.29, "learning_rate": 0.0002, "loss": 0.7198, "step": 4060 }, { "epoch": 1.29, "learning_rate": 0.0002, "loss": 0.6848, "step": 4070 }, { "epoch": 1.29, "learning_rate": 0.0002, "loss": 0.762, "step": 4080 }, { "epoch": 1.3, "learning_rate": 0.0002, "loss": 0.7354, "step": 4090 }, { "epoch": 1.3, "learning_rate": 0.0002, "loss": 0.6529, "step": 4100 }, { "epoch": 1.3, "learning_rate": 0.0002, "loss": 0.6373, "step": 4110 }, { "epoch": 1.31, "learning_rate": 0.0002, "loss": 0.7415, "step": 4120 }, { "epoch": 1.31, "learning_rate": 0.0002, "loss": 0.6646, "step": 4130 }, { "epoch": 1.31, "learning_rate": 0.0002, "loss": 0.6904, "step": 4140 }, { "epoch": 1.31, "learning_rate": 0.0002, "loss": 0.7462, "step": 4150 }, { "epoch": 1.32, "learning_rate": 0.0002, "loss": 0.7261, "step": 4160 }, { "epoch": 1.32, "learning_rate": 0.0002, "loss": 0.6866, "step": 4170 }, { "epoch": 1.32, "learning_rate": 0.0002, "loss": 0.6789, "step": 4180 }, { "epoch": 1.33, "learning_rate": 0.0002, "loss": 0.6943, "step": 4190 }, { "epoch": 1.33, "learning_rate": 0.0002, "loss": 0.6644, "step": 4200 }, { "epoch": 1.33, "eval_loss": 0.7391716241836548, "eval_runtime": 111.1279, "eval_samples_per_second": 8.999, "eval_steps_per_second": 4.499, "step": 4200 }, { "epoch": 1.33, "mmlu_eval_accuracy": 0.48595716946128337, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.375, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.2727272727272727, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.1875, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.18181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.5, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.85, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.9230769230769231, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6976744186046512, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.7272727272727273, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.5072463768115942, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.2436322906776758, "step": 4200 }, { "epoch": 1.33, "learning_rate": 0.0002, "loss": 0.7427, "step": 4210 }, { "epoch": 1.34, "learning_rate": 0.0002, "loss": 0.628, "step": 4220 }, { "epoch": 1.34, "learning_rate": 0.0002, "loss": 0.6656, "step": 4230 }, { "epoch": 1.34, "learning_rate": 0.0002, "loss": 0.6631, "step": 4240 }, { "epoch": 1.35, "learning_rate": 0.0002, "loss": 0.7031, "step": 4250 }, { "epoch": 1.35, "learning_rate": 0.0002, "loss": 0.7102, "step": 4260 }, { "epoch": 1.35, "learning_rate": 0.0002, "loss": 0.7077, "step": 4270 }, { "epoch": 1.36, "learning_rate": 0.0002, "loss": 0.7679, "step": 4280 }, { "epoch": 1.36, "learning_rate": 0.0002, "loss": 0.6569, "step": 4290 }, { "epoch": 1.36, "learning_rate": 0.0002, "loss": 0.6911, "step": 4300 }, { "epoch": 1.37, "learning_rate": 0.0002, "loss": 0.7468, "step": 4310 }, { "epoch": 1.37, "learning_rate": 0.0002, "loss": 0.6641, "step": 4320 }, { "epoch": 1.37, "learning_rate": 0.0002, "loss": 0.7248, "step": 4330 }, { "epoch": 1.38, "learning_rate": 0.0002, "loss": 0.706, "step": 4340 }, { "epoch": 1.38, "learning_rate": 0.0002, "loss": 0.717, "step": 4350 }, { "epoch": 1.38, "learning_rate": 0.0002, "loss": 0.6462, "step": 4360 }, { "epoch": 1.38, "learning_rate": 0.0002, "loss": 0.6752, "step": 4370 }, { "epoch": 1.39, "learning_rate": 0.0002, "loss": 0.7239, "step": 4380 }, { "epoch": 1.39, "learning_rate": 0.0002, "loss": 0.6665, "step": 4390 }, { "epoch": 1.39, "learning_rate": 0.0002, "loss": 0.7077, "step": 4400 }, { "epoch": 1.39, "eval_loss": 0.7374858260154724, "eval_runtime": 111.3021, "eval_samples_per_second": 8.985, "eval_steps_per_second": 4.492, "step": 4400 }, { "epoch": 1.39, "mmlu_eval_accuracy": 0.49250240895964725, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.7857142857142857, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.5454545454545454, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.3333333333333333, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.4375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.5, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.7575757575757576, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.5161290322580645, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.2793094400637455, "step": 4400 }, { "epoch": 1.4, "learning_rate": 0.0002, "loss": 0.7042, "step": 4410 }, { "epoch": 1.4, "learning_rate": 0.0002, "loss": 0.7554, "step": 4420 }, { "epoch": 1.4, "learning_rate": 0.0002, "loss": 0.757, "step": 4430 }, { "epoch": 1.41, "learning_rate": 0.0002, "loss": 0.7173, "step": 4440 }, { "epoch": 1.41, "learning_rate": 0.0002, "loss": 0.6655, "step": 4450 }, { "epoch": 1.41, "learning_rate": 0.0002, "loss": 0.6991, "step": 4460 }, { "epoch": 1.42, "learning_rate": 0.0002, "loss": 0.7148, "step": 4470 }, { "epoch": 1.42, "learning_rate": 0.0002, "loss": 0.7085, "step": 4480 }, { "epoch": 1.42, "learning_rate": 0.0002, "loss": 0.6955, "step": 4490 }, { "epoch": 1.43, "learning_rate": 0.0002, "loss": 0.7139, "step": 4500 }, { "epoch": 1.43, "learning_rate": 0.0002, "loss": 0.7262, "step": 4510 }, { "epoch": 1.43, "learning_rate": 0.0002, "loss": 0.7705, "step": 4520 }, { "epoch": 1.44, "learning_rate": 0.0002, "loss": 0.7028, "step": 4530 }, { "epoch": 1.44, "learning_rate": 0.0002, "loss": 0.7146, "step": 4540 }, { "epoch": 1.44, "learning_rate": 0.0002, "loss": 0.6868, "step": 4550 }, { "epoch": 1.44, "learning_rate": 0.0002, "loss": 0.6591, "step": 4560 }, { "epoch": 1.45, "learning_rate": 0.0002, "loss": 0.7019, "step": 4570 }, { "epoch": 1.45, "learning_rate": 0.0002, "loss": 0.6676, "step": 4580 }, { "epoch": 1.45, "learning_rate": 0.0002, "loss": 0.7085, "step": 4590 }, { "epoch": 1.46, "learning_rate": 0.0002, "loss": 0.664, "step": 4600 }, { "epoch": 1.46, "eval_loss": 0.7358158230781555, "eval_runtime": 111.2934, "eval_samples_per_second": 8.985, "eval_steps_per_second": 4.493, "step": 4600 }, { "epoch": 1.46, "mmlu_eval_accuracy": 0.4861300261183481, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.45454545454545453, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.3333333333333333, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.46875, "mmlu_eval_accuracy_high_school_chemistry": 0.18181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6666666666666666, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.5161290322580645, "mmlu_eval_accuracy_professional_psychology": 0.463768115942029, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.3095654961567946, "step": 4600 }, { "epoch": 1.46, "learning_rate": 0.0002, "loss": 0.6486, "step": 4610 }, { "epoch": 1.46, "learning_rate": 0.0002, "loss": 0.6999, "step": 4620 }, { "epoch": 1.47, "learning_rate": 0.0002, "loss": 0.6458, "step": 4630 }, { "epoch": 1.47, "learning_rate": 0.0002, "loss": 0.6762, "step": 4640 }, { "epoch": 1.47, "learning_rate": 0.0002, "loss": 0.6924, "step": 4650 }, { "epoch": 1.48, "learning_rate": 0.0002, "loss": 0.682, "step": 4660 }, { "epoch": 1.48, "learning_rate": 0.0002, "loss": 0.7081, "step": 4670 }, { "epoch": 1.48, "learning_rate": 0.0002, "loss": 0.7506, "step": 4680 }, { "epoch": 1.49, "learning_rate": 0.0002, "loss": 0.7311, "step": 4690 }, { "epoch": 1.49, "learning_rate": 0.0002, "loss": 0.6463, "step": 4700 }, { "epoch": 1.49, "learning_rate": 0.0002, "loss": 0.6741, "step": 4710 }, { "epoch": 1.5, "learning_rate": 0.0002, "loss": 0.6626, "step": 4720 }, { "epoch": 1.5, "learning_rate": 0.0002, "loss": 0.712, "step": 4730 }, { "epoch": 1.5, "learning_rate": 0.0002, "loss": 0.6676, "step": 4740 }, { "epoch": 1.51, "learning_rate": 0.0002, "loss": 0.7193, "step": 4750 }, { "epoch": 1.51, "learning_rate": 0.0002, "loss": 0.6699, "step": 4760 }, { "epoch": 1.51, "learning_rate": 0.0002, "loss": 0.6718, "step": 4770 }, { "epoch": 1.51, "learning_rate": 0.0002, "loss": 0.6899, "step": 4780 }, { "epoch": 1.52, "learning_rate": 0.0002, "loss": 0.6954, "step": 4790 }, { "epoch": 1.52, "learning_rate": 0.0002, "loss": 0.7187, "step": 4800 }, { "epoch": 1.52, "eval_loss": 0.7387924790382385, "eval_runtime": 111.1141, "eval_samples_per_second": 9.0, "eval_steps_per_second": 4.5, "step": 4800 }, { "epoch": 1.52, "mmlu_eval_accuracy": 0.4879926358283337, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.375, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.46875, "mmlu_eval_accuracy_high_school_chemistry": 0.18181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.5116279069767442, "mmlu_eval_accuracy_high_school_mathematics": 0.13793103448275862, "mmlu_eval_accuracy_high_school_microeconomics": 0.5384615384615384, "mmlu_eval_accuracy_high_school_physics": 0.058823529411764705, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.696969696969697, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.5428571428571428, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.31176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.463768115942029, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.4884750641901874, "step": 4800 }, { "epoch": 1.52, "learning_rate": 0.0002, "loss": 0.6733, "step": 4810 }, { "epoch": 1.53, "learning_rate": 0.0002, "loss": 0.6607, "step": 4820 }, { "epoch": 1.53, "learning_rate": 0.0002, "loss": 0.6933, "step": 4830 }, { "epoch": 1.53, "learning_rate": 0.0002, "loss": 0.7517, "step": 4840 }, { "epoch": 1.54, "learning_rate": 0.0002, "loss": 0.7391, "step": 4850 }, { "epoch": 1.54, "learning_rate": 0.0002, "loss": 0.6636, "step": 4860 }, { "epoch": 1.54, "learning_rate": 0.0002, "loss": 0.7221, "step": 4870 }, { "epoch": 1.55, "learning_rate": 0.0002, "loss": 0.6967, "step": 4880 }, { "epoch": 1.55, "learning_rate": 0.0002, "loss": 0.7117, "step": 4890 }, { "epoch": 1.55, "learning_rate": 0.0002, "loss": 0.6256, "step": 4900 }, { "epoch": 1.56, "learning_rate": 0.0002, "loss": 0.7923, "step": 4910 }, { "epoch": 1.56, "learning_rate": 0.0002, "loss": 0.7151, "step": 4920 }, { "epoch": 1.56, "learning_rate": 0.0002, "loss": 0.7119, "step": 4930 }, { "epoch": 1.57, "learning_rate": 0.0002, "loss": 0.7105, "step": 4940 }, { "epoch": 1.57, "learning_rate": 0.0002, "loss": 0.6653, "step": 4950 }, { "epoch": 1.57, "learning_rate": 0.0002, "loss": 0.7084, "step": 4960 }, { "epoch": 1.57, "learning_rate": 0.0002, "loss": 0.6644, "step": 4970 }, { "epoch": 1.58, "learning_rate": 0.0002, "loss": 0.6665, "step": 4980 }, { "epoch": 1.58, "learning_rate": 0.0002, "loss": 0.6746, "step": 4990 }, { "epoch": 1.58, "learning_rate": 0.0002, "loss": 0.7223, "step": 5000 }, { "epoch": 1.58, "eval_loss": 0.7373215556144714, "eval_runtime": 111.2649, "eval_samples_per_second": 8.988, "eval_steps_per_second": 4.494, "step": 5000 }, { "epoch": 1.58, "mmlu_eval_accuracy": 0.46701126611778865, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.18181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.058823529411764705, "mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.09090909090909091, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.4578603010031324, "step": 5000 }, { "epoch": 1.59, "learning_rate": 0.0002, "loss": 0.6833, "step": 5010 }, { "epoch": 1.59, "learning_rate": 0.0002, "loss": 0.7323, "step": 5020 }, { "epoch": 1.59, "learning_rate": 0.0002, "loss": 0.7224, "step": 5030 }, { "epoch": 1.6, "learning_rate": 0.0002, "loss": 0.734, "step": 5040 }, { "epoch": 1.6, "learning_rate": 0.0002, "loss": 0.692, "step": 5050 }, { "epoch": 1.6, "learning_rate": 0.0002, "loss": 0.7083, "step": 5060 }, { "epoch": 1.61, "learning_rate": 0.0002, "loss": 0.6993, "step": 5070 }, { "epoch": 1.61, "learning_rate": 0.0002, "loss": 0.755, "step": 5080 }, { "epoch": 1.61, "learning_rate": 0.0002, "loss": 0.7323, "step": 5090 }, { "epoch": 1.62, "learning_rate": 0.0002, "loss": 0.6725, "step": 5100 }, { "epoch": 1.62, "learning_rate": 0.0002, "loss": 0.6989, "step": 5110 }, { "epoch": 1.62, "learning_rate": 0.0002, "loss": 0.6938, "step": 5120 }, { "epoch": 1.63, "learning_rate": 0.0002, "loss": 0.6895, "step": 5130 }, { "epoch": 1.63, "learning_rate": 0.0002, "loss": 0.6915, "step": 5140 }, { "epoch": 1.63, "learning_rate": 0.0002, "loss": 0.7672, "step": 5150 }, { "epoch": 1.63, "learning_rate": 0.0002, "loss": 0.6413, "step": 5160 }, { "epoch": 1.64, "learning_rate": 0.0002, "loss": 0.7195, "step": 5170 }, { "epoch": 1.64, "learning_rate": 0.0002, "loss": 0.6783, "step": 5180 }, { "epoch": 1.64, "learning_rate": 0.0002, "loss": 0.6457, "step": 5190 }, { "epoch": 1.65, "learning_rate": 0.0002, "loss": 0.6959, "step": 5200 }, { "epoch": 1.65, "eval_loss": 0.736714243888855, "eval_runtime": 111.0389, "eval_samples_per_second": 9.006, "eval_steps_per_second": 4.503, "step": 5200 }, { "epoch": 1.65, "mmlu_eval_accuracy": 0.4835750759985151, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.7857142857142857, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.45454545454545453, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.5454545454545454, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.18181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.5, "mmlu_eval_accuracy_high_school_physics": 0.17647058823529413, "mmlu_eval_accuracy_high_school_psychology": 0.85, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.8181818181818182, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.696969696969697, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.22580645161290322, "mmlu_eval_accuracy_professional_law": 0.3058823529411765, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.4074074074074074, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.631578947368421, "mmlu_loss": 1.2928575183564004, "step": 5200 }, { "epoch": 1.65, "learning_rate": 0.0002, "loss": 0.654, "step": 5210 }, { "epoch": 1.65, "learning_rate": 0.0002, "loss": 0.692, "step": 5220 }, { "epoch": 1.66, "learning_rate": 0.0002, "loss": 0.6774, "step": 5230 }, { "epoch": 1.66, "learning_rate": 0.0002, "loss": 0.6383, "step": 5240 }, { "epoch": 1.66, "learning_rate": 0.0002, "loss": 0.6949, "step": 5250 }, { "epoch": 1.67, "learning_rate": 0.0002, "loss": 0.6992, "step": 5260 }, { "epoch": 1.67, "learning_rate": 0.0002, "loss": 0.6612, "step": 5270 }, { "epoch": 1.67, "learning_rate": 0.0002, "loss": 0.7651, "step": 5280 }, { "epoch": 1.68, "learning_rate": 0.0002, "loss": 0.6994, "step": 5290 }, { "epoch": 1.68, "learning_rate": 0.0002, "loss": 0.7105, "step": 5300 }, { "epoch": 1.68, "learning_rate": 0.0002, "loss": 0.6972, "step": 5310 }, { "epoch": 1.69, "learning_rate": 0.0002, "loss": 0.7531, "step": 5320 }, { "epoch": 1.69, "learning_rate": 0.0002, "loss": 0.7072, "step": 5330 }, { "epoch": 1.69, "learning_rate": 0.0002, "loss": 0.6964, "step": 5340 }, { "epoch": 1.7, "learning_rate": 0.0002, "loss": 0.7574, "step": 5350 }, { "epoch": 1.7, "learning_rate": 0.0002, "loss": 0.7155, "step": 5360 }, { "epoch": 1.7, "learning_rate": 0.0002, "loss": 0.7104, "step": 5370 }, { "epoch": 1.7, "learning_rate": 0.0002, "loss": 0.7495, "step": 5380 }, { "epoch": 1.71, "learning_rate": 0.0002, "loss": 0.7259, "step": 5390 }, { "epoch": 1.71, "learning_rate": 0.0002, "loss": 0.7394, "step": 5400 }, { "epoch": 1.71, "eval_loss": 0.7311118245124817, "eval_runtime": 111.2623, "eval_samples_per_second": 8.988, "eval_steps_per_second": 4.494, "step": 5400 }, { "epoch": 1.71, "mmlu_eval_accuracy": 0.4848351410303045, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.5526315789473685, "mmlu_eval_accuracy_moral_scenarios": 0.22, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.3058823529411765, "mmlu_eval_accuracy_professional_medicine": 0.6129032258064516, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.4074074074074074, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.348453690776937, "step": 5400 }, { "epoch": 1.71, "learning_rate": 0.0002, "loss": 0.7047, "step": 5410 }, { "epoch": 1.72, "learning_rate": 0.0002, "loss": 0.7001, "step": 5420 }, { "epoch": 1.72, "learning_rate": 0.0002, "loss": 0.6759, "step": 5430 }, { "epoch": 1.72, "learning_rate": 0.0002, "loss": 0.707, "step": 5440 }, { "epoch": 1.73, "learning_rate": 0.0002, "loss": 0.6648, "step": 5450 }, { "epoch": 1.73, "learning_rate": 0.0002, "loss": 0.7223, "step": 5460 }, { "epoch": 1.73, "learning_rate": 0.0002, "loss": 0.722, "step": 5470 }, { "epoch": 1.74, "learning_rate": 0.0002, "loss": 0.7848, "step": 5480 }, { "epoch": 1.74, "learning_rate": 0.0002, "loss": 0.6956, "step": 5490 }, { "epoch": 1.74, "learning_rate": 0.0002, "loss": 0.6584, "step": 5500 }, { "epoch": 1.75, "learning_rate": 0.0002, "loss": 0.7522, "step": 5510 }, { "epoch": 1.75, "learning_rate": 0.0002, "loss": 0.7374, "step": 5520 }, { "epoch": 1.75, "learning_rate": 0.0002, "loss": 0.635, "step": 5530 }, { "epoch": 1.76, "learning_rate": 0.0002, "loss": 0.6947, "step": 5540 }, { "epoch": 1.76, "learning_rate": 0.0002, "loss": 0.6948, "step": 5550 }, { "epoch": 1.76, "learning_rate": 0.0002, "loss": 0.676, "step": 5560 }, { "epoch": 1.76, "learning_rate": 0.0002, "loss": 0.7053, "step": 5570 }, { "epoch": 1.77, "learning_rate": 0.0002, "loss": 0.6868, "step": 5580 }, { "epoch": 1.77, "learning_rate": 0.0002, "loss": 0.7307, "step": 5590 }, { "epoch": 1.77, "learning_rate": 0.0002, "loss": 0.6902, "step": 5600 }, { "epoch": 1.77, "eval_loss": 0.7314637899398804, "eval_runtime": 111.0487, "eval_samples_per_second": 9.005, "eval_steps_per_second": 4.503, "step": 5600 }, { "epoch": 1.77, "mmlu_eval_accuracy": 0.48467107795368586, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.375, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.5454545454545454, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791, "mmlu_eval_accuracy_high_school_mathematics": 0.13793103448275862, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.058823529411764705, "mmlu_eval_accuracy_high_school_psychology": 0.85, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.782608695652174, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.7272727272727273, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.1935483870967742, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.5483870967741935, "mmlu_eval_accuracy_professional_psychology": 0.4782608695652174, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.3874250733665636, "step": 5600 }, { "epoch": 1.78, "learning_rate": 0.0002, "loss": 0.6558, "step": 5610 }, { "epoch": 1.78, "learning_rate": 0.0002, "loss": 0.714, "step": 5620 }, { "epoch": 1.78, "learning_rate": 0.0002, "loss": 0.7019, "step": 5630 }, { "epoch": 1.79, "learning_rate": 0.0002, "loss": 0.7084, "step": 5640 }, { "epoch": 1.79, "learning_rate": 0.0002, "loss": 0.7184, "step": 5650 }, { "epoch": 1.79, "learning_rate": 0.0002, "loss": 0.6524, "step": 5660 }, { "epoch": 1.8, "learning_rate": 0.0002, "loss": 0.7265, "step": 5670 }, { "epoch": 1.8, "learning_rate": 0.0002, "loss": 0.7164, "step": 5680 }, { "epoch": 1.8, "learning_rate": 0.0002, "loss": 0.6825, "step": 5690 }, { "epoch": 1.81, "learning_rate": 0.0002, "loss": 0.7427, "step": 5700 }, { "epoch": 1.81, "learning_rate": 0.0002, "loss": 0.7416, "step": 5710 }, { "epoch": 1.81, "learning_rate": 0.0002, "loss": 0.7027, "step": 5720 }, { "epoch": 1.82, "learning_rate": 0.0002, "loss": 0.7039, "step": 5730 }, { "epoch": 1.82, "learning_rate": 0.0002, "loss": 0.7108, "step": 5740 }, { "epoch": 1.82, "learning_rate": 0.0002, "loss": 0.6257, "step": 5750 }, { "epoch": 1.83, "learning_rate": 0.0002, "loss": 0.6665, "step": 5760 }, { "epoch": 1.83, "learning_rate": 0.0002, "loss": 0.7371, "step": 5770 }, { "epoch": 1.83, "learning_rate": 0.0002, "loss": 0.7194, "step": 5780 }, { "epoch": 1.83, "learning_rate": 0.0002, "loss": 0.7164, "step": 5790 }, { "epoch": 1.84, "learning_rate": 0.0002, "loss": 0.6887, "step": 5800 }, { "epoch": 1.84, "eval_loss": 0.732559084892273, "eval_runtime": 111.5342, "eval_samples_per_second": 8.966, "eval_steps_per_second": 4.483, "step": 5800 }, { "epoch": 1.84, "mmlu_eval_accuracy": 0.4740066355704332, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.375, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.2727272727272727, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8333333333333334, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.6538461538461539, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.9230769230769231, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, "mmlu_eval_accuracy_professional_law": 0.29411764705882354, "mmlu_eval_accuracy_professional_medicine": 0.6451612903225806, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.631578947368421, "mmlu_loss": 1.3845557023822173, "step": 5800 }, { "epoch": 1.84, "learning_rate": 0.0002, "loss": 0.668, "step": 5810 }, { "epoch": 1.84, "learning_rate": 0.0002, "loss": 0.6993, "step": 5820 }, { "epoch": 1.85, "learning_rate": 0.0002, "loss": 0.7418, "step": 5830 }, { "epoch": 1.85, "learning_rate": 0.0002, "loss": 0.6916, "step": 5840 }, { "epoch": 1.85, "learning_rate": 0.0002, "loss": 0.7564, "step": 5850 }, { "epoch": 1.86, "learning_rate": 0.0002, "loss": 0.641, "step": 5860 }, { "epoch": 1.86, "learning_rate": 0.0002, "loss": 0.7593, "step": 5870 }, { "epoch": 1.86, "learning_rate": 0.0002, "loss": 0.6886, "step": 5880 }, { "epoch": 1.87, "learning_rate": 0.0002, "loss": 0.7053, "step": 5890 }, { "epoch": 1.87, "learning_rate": 0.0002, "loss": 0.6201, "step": 5900 }, { "epoch": 1.87, "learning_rate": 0.0002, "loss": 0.6998, "step": 5910 }, { "epoch": 1.88, "learning_rate": 0.0002, "loss": 0.6768, "step": 5920 }, { "epoch": 1.88, "learning_rate": 0.0002, "loss": 0.711, "step": 5930 }, { "epoch": 1.88, "learning_rate": 0.0002, "loss": 0.681, "step": 5940 }, { "epoch": 1.89, "learning_rate": 0.0002, "loss": 0.7145, "step": 5950 }, { "epoch": 1.89, "learning_rate": 0.0002, "loss": 0.7513, "step": 5960 }, { "epoch": 1.89, "learning_rate": 0.0002, "loss": 0.6817, "step": 5970 }, { "epoch": 1.89, "learning_rate": 0.0002, "loss": 0.6757, "step": 5980 }, { "epoch": 1.9, "learning_rate": 0.0002, "loss": 0.6899, "step": 5990 }, { "epoch": 1.9, "learning_rate": 0.0002, "loss": 0.6821, "step": 6000 }, { "epoch": 1.9, "eval_loss": 0.7302425503730774, "eval_runtime": 111.0525, "eval_samples_per_second": 9.005, "eval_steps_per_second": 4.502, "step": 6000 }, { "epoch": 1.9, "mmlu_eval_accuracy": 0.47023094937776666, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.9230769230769231, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, "mmlu_eval_accuracy_professional_law": 0.3, "mmlu_eval_accuracy_professional_medicine": 0.6451612903225806, "mmlu_eval_accuracy_professional_psychology": 0.5072463768115942, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.631578947368421, "mmlu_loss": 1.4106916200087525, "step": 6000 }, { "epoch": 1.9, "learning_rate": 0.0002, "loss": 0.7115, "step": 6010 }, { "epoch": 1.91, "learning_rate": 0.0002, "loss": 0.6862, "step": 6020 }, { "epoch": 1.91, "learning_rate": 0.0002, "loss": 0.6705, "step": 6030 }, { "epoch": 1.91, "learning_rate": 0.0002, "loss": 0.6848, "step": 6040 }, { "epoch": 1.92, "learning_rate": 0.0002, "loss": 0.7765, "step": 6050 }, { "epoch": 1.92, "learning_rate": 0.0002, "loss": 0.6801, "step": 6060 }, { "epoch": 1.92, "learning_rate": 0.0002, "loss": 0.6648, "step": 6070 }, { "epoch": 1.93, "learning_rate": 0.0002, "loss": 0.6847, "step": 6080 }, { "epoch": 1.93, "learning_rate": 0.0002, "loss": 0.665, "step": 6090 }, { "epoch": 1.93, "learning_rate": 0.0002, "loss": 0.7627, "step": 6100 }, { "epoch": 1.94, "learning_rate": 0.0002, "loss": 0.6874, "step": 6110 }, { "epoch": 1.94, "learning_rate": 0.0002, "loss": 0.6907, "step": 6120 }, { "epoch": 1.94, "learning_rate": 0.0002, "loss": 0.6369, "step": 6130 }, { "epoch": 1.95, "learning_rate": 0.0002, "loss": 0.7289, "step": 6140 }, { "epoch": 1.95, "learning_rate": 0.0002, "loss": 0.7233, "step": 6150 }, { "epoch": 1.95, "learning_rate": 0.0002, "loss": 0.68, "step": 6160 }, { "epoch": 1.96, "learning_rate": 0.0002, "loss": 0.6842, "step": 6170 }, { "epoch": 1.96, "learning_rate": 0.0002, "loss": 0.7125, "step": 6180 }, { "epoch": 1.96, "learning_rate": 0.0002, "loss": 0.683, "step": 6190 }, { "epoch": 1.96, "learning_rate": 0.0002, "loss": 0.7097, "step": 6200 }, { "epoch": 1.96, "eval_loss": 0.7293602228164673, "eval_runtime": 111.0579, "eval_samples_per_second": 9.004, "eval_steps_per_second": 4.502, "step": 6200 }, { "epoch": 1.96, "mmlu_eval_accuracy": 0.4704848103487601, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.2727272727272727, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.782608695652174, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.9230769230769231, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.5526315789473685, "mmlu_eval_accuracy_moral_scenarios": 0.28, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.41935483870967744, "mmlu_eval_accuracy_professional_law": 0.31176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226, "mmlu_eval_accuracy_professional_psychology": 0.463768115942029, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.631578947368421, "mmlu_loss": 1.374586288985011, "step": 6200 }, { "epoch": 1.97, "learning_rate": 0.0002, "loss": 0.7095, "step": 6210 }, { "epoch": 1.97, "learning_rate": 0.0002, "loss": 0.7681, "step": 6220 }, { "epoch": 1.97, "learning_rate": 0.0002, "loss": 0.7356, "step": 6230 }, { "epoch": 1.98, "learning_rate": 0.0002, "loss": 0.6956, "step": 6240 }, { "epoch": 1.98, "learning_rate": 0.0002, "loss": 0.7034, "step": 6250 }, { "epoch": 1.98, "learning_rate": 0.0002, "loss": 0.6532, "step": 6260 }, { "epoch": 1.99, "learning_rate": 0.0002, "loss": 0.6917, "step": 6270 }, { "epoch": 1.99, "learning_rate": 0.0002, "loss": 0.6392, "step": 6280 }, { "epoch": 1.99, "learning_rate": 0.0002, "loss": 0.6656, "step": 6290 }, { "epoch": 2.0, "learning_rate": 0.0002, "loss": 0.6829, "step": 6300 }, { "epoch": 2.0, "learning_rate": 0.0002, "loss": 0.675, "step": 6310 }, { "epoch": 2.0, "learning_rate": 0.0002, "loss": 0.6321, "step": 6320 }, { "epoch": 2.01, "learning_rate": 0.0002, "loss": 0.6109, "step": 6330 }, { "epoch": 2.01, "learning_rate": 0.0002, "loss": 0.6065, "step": 6340 }, { "epoch": 2.01, "learning_rate": 0.0002, "loss": 0.5912, "step": 6350 }, { "epoch": 2.02, "learning_rate": 0.0002, "loss": 0.613, "step": 6360 }, { "epoch": 2.02, "learning_rate": 0.0002, "loss": 0.586, "step": 6370 }, { "epoch": 2.02, "learning_rate": 0.0002, "loss": 0.6383, "step": 6380 }, { "epoch": 2.02, "learning_rate": 0.0002, "loss": 0.5629, "step": 6390 }, { "epoch": 2.03, "learning_rate": 0.0002, "loss": 0.6048, "step": 6400 }, { "epoch": 2.03, "eval_loss": 0.7574472427368164, "eval_runtime": 110.9511, "eval_samples_per_second": 9.013, "eval_steps_per_second": 4.506, "step": 6400 }, { "epoch": 2.03, "mmlu_eval_accuracy": 0.470592564742188, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.4375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.5116279069767442, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.0, "mmlu_eval_accuracy_high_school_psychology": 0.8333333333333334, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.9230769230769231, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.26, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.6129032258064516, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.631578947368421, "mmlu_loss": 1.3004325469542422, "step": 6400 }, { "epoch": 2.03, "learning_rate": 0.0002, "loss": 0.5702, "step": 6410 }, { "epoch": 2.03, "learning_rate": 0.0002, "loss": 0.5957, "step": 6420 }, { "epoch": 2.04, "learning_rate": 0.0002, "loss": 0.5994, "step": 6430 }, { "epoch": 2.04, "learning_rate": 0.0002, "loss": 0.5922, "step": 6440 }, { "epoch": 2.04, "learning_rate": 0.0002, "loss": 0.5626, "step": 6450 }, { "epoch": 2.05, "learning_rate": 0.0002, "loss": 0.5912, "step": 6460 }, { "epoch": 2.05, "learning_rate": 0.0002, "loss": 0.5877, "step": 6470 }, { "epoch": 2.05, "learning_rate": 0.0002, "loss": 0.578, "step": 6480 }, { "epoch": 2.06, "learning_rate": 0.0002, "loss": 0.6207, "step": 6490 }, { "epoch": 2.06, "learning_rate": 0.0002, "loss": 0.5606, "step": 6500 }, { "epoch": 2.06, "learning_rate": 0.0002, "loss": 0.553, "step": 6510 }, { "epoch": 2.07, "learning_rate": 0.0002, "loss": 0.6092, "step": 6520 }, { "epoch": 2.07, "learning_rate": 0.0002, "loss": 0.6183, "step": 6530 }, { "epoch": 2.07, "learning_rate": 0.0002, "loss": 0.5825, "step": 6540 }, { "epoch": 2.08, "learning_rate": 0.0002, "loss": 0.5674, "step": 6550 }, { "epoch": 2.08, "learning_rate": 0.0002, "loss": 0.5587, "step": 6560 }, { "epoch": 2.08, "learning_rate": 0.0002, "loss": 0.5317, "step": 6570 }, { "epoch": 2.08, "learning_rate": 0.0002, "loss": 0.6731, "step": 6580 }, { "epoch": 2.09, "learning_rate": 0.0002, "loss": 0.6242, "step": 6590 }, { "epoch": 2.09, "learning_rate": 0.0002, "loss": 0.6332, "step": 6600 }, { "epoch": 2.09, "eval_loss": 0.7567528486251831, "eval_runtime": 111.0264, "eval_samples_per_second": 9.007, "eval_steps_per_second": 4.503, "step": 6600 }, { "epoch": 2.09, "mmlu_eval_accuracy": 0.47542707100737025, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.058823529411764705, "mmlu_eval_accuracy_high_school_psychology": 0.85, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.26, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.31176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.5806451612903226, "mmlu_eval_accuracy_professional_psychology": 0.4782608695652174, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.631578947368421, "mmlu_loss": 1.4275867019247448, "step": 6600 } ], "max_steps": 10000, "num_train_epochs": 4, "total_flos": 2.0028582776394056e+18, "trial_name": null, "trial_params": null }