{ "best_metric": 0.7120537757873535, "best_model_checkpoint": "./output_v2/7b_cluster06_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_06/checkpoint-200", "epoch": 0.45977011494252873, "global_step": 200, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.8662, "step": 10 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7634, "step": 20 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.8485, "step": 30 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.7866, "step": 40 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.7199, "step": 50 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.7387, "step": 60 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.705, "step": 70 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.7617, "step": 80 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.7022, "step": 90 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.715, "step": 100 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.6946, "step": 110 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.7201, "step": 120 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.6633, "step": 130 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.687, "step": 140 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.7582, "step": 150 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.7141, "step": 160 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.7852, "step": 170 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.7228, "step": 180 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.7682, "step": 190 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.6408, "step": 200 }, { "epoch": 0.46, "eval_loss": 0.7120537757873535, "eval_runtime": 248.212, "eval_samples_per_second": 4.029, "eval_steps_per_second": 2.014, "step": 200 }, { "epoch": 0.46, "mmlu_eval_accuracy": 0.47641762588949127, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.625, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.5454545454545454, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.4117647058823529, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.35294117647058826, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.048742408132273, "step": 200 } ], "max_steps": 5000, "num_train_epochs": 12, "total_flos": 4.634603835339571e+16, "trial_name": null, "trial_params": null }