{ "best_metric": 0.9020043015480042, "best_model_checkpoint": "./output_v2/7b_cluster04_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_04/checkpoint-400", "epoch": 0.36190907034607556, "global_step": 400, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.9647, "step": 10 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.9474, "step": 20 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.9287, "step": 30 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.8723, "step": 40 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.8812, "step": 50 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.8627, "step": 60 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.8893, "step": 70 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.8793, "step": 80 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.8778, "step": 90 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.8809, "step": 100 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.8534, "step": 110 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.8566, "step": 120 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.8979, "step": 130 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.8919, "step": 140 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.8435, "step": 150 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.8764, "step": 160 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.8806, "step": 170 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.8178, "step": 180 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.8821, "step": 190 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.8603, "step": 200 }, { "epoch": 0.18, "eval_loss": 0.91291344165802, "eval_runtime": 191.1983, "eval_samples_per_second": 5.23, "eval_steps_per_second": 2.615, "step": 200 }, { "epoch": 0.18, "mmlu_eval_accuracy": 0.4726714210605103, "mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.8181818181818182, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5925925925925926, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.0958761447948202, "step": 200 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.8708, "step": 210 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.8801, "step": 220 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.8636, "step": 230 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.8371, "step": 240 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.8593, "step": 250 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.8254, "step": 260 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.8625, "step": 270 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.8968, "step": 280 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.8849, "step": 290 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.8063, "step": 300 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.8439, "step": 310 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.8491, "step": 320 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.8443, "step": 330 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.8588, "step": 340 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.8509, "step": 350 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.8041, "step": 360 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.8418, "step": 370 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.8496, "step": 380 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.8175, "step": 390 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.8622, "step": 400 }, { "epoch": 0.36, "eval_loss": 0.9020043015480042, "eval_runtime": 191.4718, "eval_samples_per_second": 5.223, "eval_steps_per_second": 2.611, "step": 400 }, { "epoch": 0.36, "mmlu_eval_accuracy": 0.4652294198230619, "mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.1965837302975182, "step": 400 } ], "max_steps": 5000, "num_train_epochs": 5, "total_flos": 9.122622440649523e+16, "trial_name": null, "trial_params": null }