{ "best_metric": 0.5195611119270325, "best_model_checkpoint": "./output_v2/7b_cluster030_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_030/checkpoint-1200", "epoch": 0.548213411649535, "global_step": 1400, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.0, "learning_rate": 0.0002, "loss": 0.9902, "step": 10 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.7549, "step": 20 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.8421, "step": 30 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.6897, "step": 40 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.8507, "step": 50 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.6511, "step": 60 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.6798, "step": 70 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7609, "step": 80 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.7702, "step": 90 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.6088, "step": 100 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.694, "step": 110 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.6922, "step": 120 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.6326, "step": 130 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.4704, "step": 140 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.6479, "step": 150 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.6442, "step": 160 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.5064, "step": 170 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.5357, "step": 180 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.671, "step": 190 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.7203, "step": 200 }, { "epoch": 0.08, "eval_loss": 0.5725088715553284, "eval_runtime": 110.5239, "eval_samples_per_second": 9.048, "eval_steps_per_second": 4.524, "step": 200 }, { "epoch": 0.08, "mmlu_eval_accuracy": 0.4726934353480768, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.6363636363636364, "mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3953488372093023, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.4230769230769231, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.64, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6046511627906976, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.31, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9052433924598732, "step": 200 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.6101, "step": 210 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.481, "step": 220 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.5222, "step": 230 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.5102, "step": 240 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.6642, "step": 250 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.5723, "step": 260 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.4273, "step": 270 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.6994, "step": 280 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.7166, "step": 290 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.6693, "step": 300 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.5636, "step": 310 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.6241, "step": 320 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.5453, "step": 330 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.6589, "step": 340 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.6073, "step": 350 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.5931, "step": 360 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.5405, "step": 370 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.6522, "step": 380 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.672, "step": 390 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.5791, "step": 400 }, { "epoch": 0.16, "eval_loss": 0.5623835921287537, "eval_runtime": 111.0199, "eval_samples_per_second": 9.007, "eval_steps_per_second": 4.504, "step": 400 }, { "epoch": 0.16, "mmlu_eval_accuracy": 0.4759225748253283, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.5, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.6666666666666666, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.37142857142857144, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.7727272727272727, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.7658495643363376, "step": 400 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.6453, "step": 410 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.6714, "step": 420 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.6399, "step": 430 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.481, "step": 440 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.5834, "step": 450 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.6174, "step": 460 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.6331, "step": 470 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.5989, "step": 480 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.6293, "step": 490 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.4968, "step": 500 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.609, "step": 510 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.52, "step": 520 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.5791, "step": 530 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.5389, "step": 540 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.5664, "step": 550 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.5939, "step": 560 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.5111, "step": 570 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.5947, "step": 580 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.6401, "step": 590 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.5482, "step": 600 }, { "epoch": 0.23, "eval_loss": 0.5499725341796875, "eval_runtime": 111.3864, "eval_samples_per_second": 8.978, "eval_steps_per_second": 4.489, "step": 600 }, { "epoch": 0.23, "mmlu_eval_accuracy": 0.4639735323699154, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.5, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.46875, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.6363636363636364, "mmlu_eval_accuracy_miscellaneous": 0.627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.5789473684210527, "mmlu_eval_accuracy_moral_scenarios": 0.32, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.38235294117647056, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.22580645161290322, "mmlu_eval_accuracy_professional_law": 0.36470588235294116, "mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, "mmlu_eval_accuracy_professional_psychology": 0.4492753623188406, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.8004742157074085, "step": 600 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.5413, "step": 610 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.5972, "step": 620 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.601, "step": 630 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.6284, "step": 640 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.6391, "step": 650 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.7461, "step": 660 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.5584, "step": 670 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.5523, "step": 680 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.6266, "step": 690 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.6217, "step": 700 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.5673, "step": 710 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.608, "step": 720 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.6208, "step": 730 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.5609, "step": 740 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.4951, "step": 750 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.5513, "step": 760 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.6386, "step": 770 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.4915, "step": 780 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.6105, "step": 790 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.5794, "step": 800 }, { "epoch": 0.31, "eval_loss": 0.5391483306884766, "eval_runtime": 111.9656, "eval_samples_per_second": 8.931, "eval_steps_per_second": 4.466, "step": 800 }, { "epoch": 0.31, "mmlu_eval_accuracy": 0.4865307699515832, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.5517241379310345, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.5, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.08333333333333333, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.4375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3953488372093023, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6086956521739131, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.6052631578947368, "mmlu_eval_accuracy_moral_scenarios": 0.26, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.34705882352941175, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.43478260869565216, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.3333333333333333, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.734274251542149, "step": 800 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.5351, "step": 810 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.7598, "step": 820 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.5416, "step": 830 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.5895, "step": 840 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.6436, "step": 850 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.714, "step": 860 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.7195, "step": 870 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.5647, "step": 880 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.5616, "step": 890 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.7585, "step": 900 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.6748, "step": 910 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.622, "step": 920 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.5912, "step": 930 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.5217, "step": 940 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.5993, "step": 950 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.5852, "step": 960 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.586, "step": 970 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.5978, "step": 980 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.6072, "step": 990 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.7357, "step": 1000 }, { "epoch": 0.39, "eval_loss": 0.540454089641571, "eval_runtime": 111.6241, "eval_samples_per_second": 8.959, "eval_steps_per_second": 4.479, "step": 1000 }, { "epoch": 0.39, "mmlu_eval_accuracy": 0.46609677068605504, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.3793103448275862, "mmlu_eval_accuracy_college_biology": 0.25, "mmlu_eval_accuracy_college_chemistry": 0.375, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.08333333333333333, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.39473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.34285714285714286, "mmlu_eval_accuracy_professional_accounting": 0.41935483870967744, "mmlu_eval_accuracy_professional_law": 0.31176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.43478260869565216, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.7961046382707031, "step": 1000 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.6952, "step": 1010 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.5948, "step": 1020 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.6301, "step": 1030 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.6787, "step": 1040 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.5183, "step": 1050 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.7002, "step": 1060 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.6534, "step": 1070 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.5553, "step": 1080 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.499, "step": 1090 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.6952, "step": 1100 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.5279, "step": 1110 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.6835, "step": 1120 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.5202, "step": 1130 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.5252, "step": 1140 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.5192, "step": 1150 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.5952, "step": 1160 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.5739, "step": 1170 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.6092, "step": 1180 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.7525, "step": 1190 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.6786, "step": 1200 }, { "epoch": 0.47, "eval_loss": 0.5195611119270325, "eval_runtime": 111.24, "eval_samples_per_second": 8.99, "eval_steps_per_second": 4.495, "step": 1200 }, { "epoch": 0.47, "mmlu_eval_accuracy": 0.4533161015344259, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.45454545454545453, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.08333333333333333, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.38095238095238093, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.09090909090909091, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.26, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.22580645161290322, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.7577510231390946, "step": 1200 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.676, "step": 1210 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.5373, "step": 1220 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.6367, "step": 1230 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.5926, "step": 1240 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.5637, "step": 1250 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.6318, "step": 1260 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.6401, "step": 1270 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.56, "step": 1280 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.5247, "step": 1290 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.6248, "step": 1300 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.551, "step": 1310 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.5318, "step": 1320 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.4965, "step": 1330 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.6144, "step": 1340 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.5746, "step": 1350 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.5896, "step": 1360 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.5302, "step": 1370 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.5363, "step": 1380 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.4933, "step": 1390 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.4435, "step": 1400 }, { "epoch": 0.55, "eval_loss": 0.5208213925361633, "eval_runtime": 112.8123, "eval_samples_per_second": 8.864, "eval_steps_per_second": 4.432, "step": 1400 }, { "epoch": 0.55, "mmlu_eval_accuracy": 0.47006780054926284, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.5625, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.375, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.5454545454545454, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.2, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.47619047619047616, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, "mmlu_eval_accuracy_human_aging": 0.782608695652174, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.28, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.37142857142857144, "mmlu_eval_accuracy_professional_accounting": 0.45161290322580644, "mmlu_eval_accuracy_professional_law": 0.34705882352941175, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.43478260869565216, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.5454545454545454, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.7375706565364534, "step": 1400 } ], "max_steps": 5000, "num_train_epochs": 2, "total_flos": 1.1029560251970355e+17, "trial_name": null, "trial_params": null }