{ "best_metric": 0.5827956199645996, "best_model_checkpoint": "./output_v2/7b_cluster029_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_029/checkpoint-600", "epoch": 1.21580547112462, "global_step": 600, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.6742, "step": 10 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.6589, "step": 20 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.6439, "step": 30 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.611, "step": 40 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.6127, "step": 50 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.6089, "step": 60 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.6102, "step": 70 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.5998, "step": 80 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.6031, "step": 90 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.5942, "step": 100 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.6057, "step": 110 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.5994, "step": 120 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.619, "step": 130 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.6001, "step": 140 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.6004, "step": 150 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.6108, "step": 160 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.5893, "step": 170 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.5896, "step": 180 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.5795, "step": 190 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.587, "step": 200 }, { "epoch": 0.41, "eval_loss": 0.6020743250846863, "eval_runtime": 220.3104, "eval_samples_per_second": 4.539, "eval_steps_per_second": 2.27, "step": 200 }, { "epoch": 0.41, "mmlu_eval_accuracy": 0.4675041957905457, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.169526866031689, "step": 200 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.6093, "step": 210 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.5798, "step": 220 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.5986, "step": 230 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.5874, "step": 240 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.5871, "step": 250 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.5827, "step": 260 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.5883, "step": 270 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.593, "step": 280 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.5939, "step": 290 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.5893, "step": 300 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.5809, "step": 310 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.5839, "step": 320 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.5898, "step": 330 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.5787, "step": 340 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.588, "step": 350 }, { "epoch": 0.73, "learning_rate": 0.0002, "loss": 0.5679, "step": 360 }, { "epoch": 0.75, "learning_rate": 0.0002, "loss": 0.5723, "step": 370 }, { "epoch": 0.77, "learning_rate": 0.0002, "loss": 0.5878, "step": 380 }, { "epoch": 0.79, "learning_rate": 0.0002, "loss": 0.582, "step": 390 }, { "epoch": 0.81, "learning_rate": 0.0002, "loss": 0.5803, "step": 400 }, { "epoch": 0.81, "eval_loss": 0.5868815779685974, "eval_runtime": 220.3563, "eval_samples_per_second": 4.538, "eval_steps_per_second": 2.269, "step": 400 }, { "epoch": 0.81, "mmlu_eval_accuracy": 0.4696096782214941, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.5, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0689004451892394, "step": 400 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.5871, "step": 410 }, { "epoch": 0.85, "learning_rate": 0.0002, "loss": 0.5815, "step": 420 }, { "epoch": 0.87, "learning_rate": 0.0002, "loss": 0.5658, "step": 430 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.5686, "step": 440 }, { "epoch": 0.91, "learning_rate": 0.0002, "loss": 0.585, "step": 450 }, { "epoch": 0.93, "learning_rate": 0.0002, "loss": 0.5673, "step": 460 }, { "epoch": 0.95, "learning_rate": 0.0002, "loss": 0.5691, "step": 470 }, { "epoch": 0.97, "learning_rate": 0.0002, "loss": 0.5693, "step": 480 }, { "epoch": 0.99, "learning_rate": 0.0002, "loss": 0.5749, "step": 490 }, { "epoch": 1.01, "learning_rate": 0.0002, "loss": 0.5457, "step": 500 }, { "epoch": 1.03, "learning_rate": 0.0002, "loss": 0.5199, "step": 510 }, { "epoch": 1.05, "learning_rate": 0.0002, "loss": 0.5157, "step": 520 }, { "epoch": 1.07, "learning_rate": 0.0002, "loss": 0.513, "step": 530 }, { "epoch": 1.09, "learning_rate": 0.0002, "loss": 0.4971, "step": 540 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.504, "step": 550 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.5191, "step": 560 }, { "epoch": 1.16, "learning_rate": 0.0002, "loss": 0.5196, "step": 570 }, { "epoch": 1.18, "learning_rate": 0.0002, "loss": 0.5236, "step": 580 }, { "epoch": 1.2, "learning_rate": 0.0002, "loss": 0.4866, "step": 590 }, { "epoch": 1.22, "learning_rate": 0.0002, "loss": 0.5147, "step": 600 }, { "epoch": 1.22, "eval_loss": 0.5827956199645996, "eval_runtime": 220.4163, "eval_samples_per_second": 4.537, "eval_steps_per_second": 2.268, "step": 600 }, { "epoch": 1.22, "mmlu_eval_accuracy": 0.468505142513405, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.5625, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.5, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, "mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.6296296296296297, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0294917702441426, "step": 600 } ], "max_steps": 5000, "num_train_epochs": 11, "total_flos": 1.471264967961723e+17, "trial_name": null, "trial_params": null }