{ "best_metric": 0.598466694355011, "best_model_checkpoint": "./output_v2/7b_cluster020_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_020/checkpoint-2200", "epoch": 1.1333738109694393, "global_step": 2800, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.0, "learning_rate": 0.0002, "loss": 0.6996, "step": 10 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.7986, "step": 20 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.5936, "step": 30 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.6164, "step": 40 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.7464, "step": 50 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.8856, "step": 60 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.6476, "step": 70 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.65, "step": 80 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.5282, "step": 90 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.5787, "step": 100 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.6315, "step": 110 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.5419, "step": 120 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.593, "step": 130 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.6773, "step": 140 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.5536, "step": 150 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.6384, "step": 160 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.5736, "step": 170 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.6157, "step": 180 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.5551, "step": 190 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.6446, "step": 200 }, { "epoch": 0.08, "eval_loss": 0.6395586133003235, "eval_runtime": 94.1614, "eval_samples_per_second": 10.62, "eval_steps_per_second": 5.31, "step": 200 }, { "epoch": 0.08, "mmlu_eval_accuracy": 0.4559132721218583, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.3793103448275862, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.3125, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.31176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.43478260869565216, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.0596903230868493, "step": 200 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.7307, "step": 210 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.5717, "step": 220 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.6836, "step": 230 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.5819, "step": 240 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.5666, "step": 250 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.5266, "step": 260 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.5218, "step": 270 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.5487, "step": 280 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.5345, "step": 290 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.6299, "step": 300 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.5681, "step": 310 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.5553, "step": 320 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.575, "step": 330 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.5708, "step": 340 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.4932, "step": 350 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.6957, "step": 360 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.6442, "step": 370 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.5999, "step": 380 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.5086, "step": 390 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.7349, "step": 400 }, { "epoch": 0.16, "eval_loss": 0.6260886192321777, "eval_runtime": 94.1289, "eval_samples_per_second": 10.624, "eval_steps_per_second": 5.312, "step": 400 }, { "epoch": 0.16, "mmlu_eval_accuracy": 0.4735216064792921, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.5454545454545454, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6162790697674418, "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6666666666666666, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9645495347814834, "step": 400 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.6117, "step": 410 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.5963, "step": 420 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.5866, "step": 430 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.5433, "step": 440 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.5432, "step": 450 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.5713, "step": 460 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.5957, "step": 470 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.6526, "step": 480 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.57, "step": 490 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.5938, "step": 500 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.6141, "step": 510 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.5262, "step": 520 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.7055, "step": 530 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.5412, "step": 540 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.4956, "step": 550 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.6345, "step": 560 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.5665, "step": 570 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.6687, "step": 580 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.5994, "step": 590 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.6209, "step": 600 }, { "epoch": 0.24, "eval_loss": 0.6194782853126526, "eval_runtime": 94.0475, "eval_samples_per_second": 10.633, "eval_steps_per_second": 5.316, "step": 600 }, { "epoch": 0.24, "mmlu_eval_accuracy": 0.44690777926110636, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.42857142857142855, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.3076923076923077, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.2, "mmlu_eval_accuracy_high_school_biology": 0.28125, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.17647058823529413, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.09090909090909091, "mmlu_eval_accuracy_management": 0.36363636363636365, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.5588235294117647, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9532866988613151, "step": 600 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.6145, "step": 610 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.6267, "step": 620 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.5609, "step": 630 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.4955, "step": 640 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.551, "step": 650 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.5323, "step": 660 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.5905, "step": 670 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.7368, "step": 680 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.573, "step": 690 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.5785, "step": 700 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.5802, "step": 710 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.5823, "step": 720 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.5718, "step": 730 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.5783, "step": 740 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.5367, "step": 750 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.6111, "step": 760 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.5343, "step": 770 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.6399, "step": 780 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.6314, "step": 790 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.506, "step": 800 }, { "epoch": 0.32, "eval_loss": 0.612710177898407, "eval_runtime": 94.0353, "eval_samples_per_second": 10.634, "eval_steps_per_second": 5.317, "step": 800 }, { "epoch": 0.32, "mmlu_eval_accuracy": 0.451824690933893, "mmlu_eval_accuracy_abstract_algebra": 0.45454545454545453, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.18181818181818182, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.3076923076923077, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.36363636363636365, "mmlu_eval_accuracy_marketing": 0.64, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9771831466113619, "step": 800 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.604, "step": 810 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.5633, "step": 820 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.5965, "step": 830 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.5563, "step": 840 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.6227, "step": 850 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.6758, "step": 860 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.6293, "step": 870 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.6711, "step": 880 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.5607, "step": 890 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.66, "step": 900 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.5449, "step": 910 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.5715, "step": 920 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.5366, "step": 930 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.4633, "step": 940 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.5635, "step": 950 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.5331, "step": 960 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.5642, "step": 970 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.6002, "step": 980 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.5484, "step": 990 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.591, "step": 1000 }, { "epoch": 0.4, "eval_loss": 0.6107870936393738, "eval_runtime": 94.1069, "eval_samples_per_second": 10.626, "eval_steps_per_second": 5.313, "step": 1000 }, { "epoch": 0.4, "mmlu_eval_accuracy": 0.44434023866715483, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.3125, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.36363636363636365, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.22580645161290322, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.5, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.6111111111111112, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9966794518515585, "step": 1000 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.5453, "step": 1010 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.4825, "step": 1020 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.5663, "step": 1030 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.4528, "step": 1040 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.6646, "step": 1050 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.5613, "step": 1060 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.6912, "step": 1070 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.6891, "step": 1080 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.5508, "step": 1090 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.6595, "step": 1100 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.5936, "step": 1110 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.6558, "step": 1120 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.6729, "step": 1130 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.6205, "step": 1140 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.6675, "step": 1150 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.5649, "step": 1160 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.5922, "step": 1170 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.4905, "step": 1180 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.6746, "step": 1190 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.6171, "step": 1200 }, { "epoch": 0.49, "eval_loss": 0.612968921661377, "eval_runtime": 94.0813, "eval_samples_per_second": 10.629, "eval_steps_per_second": 5.315, "step": 1200 }, { "epoch": 0.49, "mmlu_eval_accuracy": 0.4287111481518256, "mmlu_eval_accuracy_abstract_algebra": 0.45454545454545453, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.09090909090909091, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.4146341463414634, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.25, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, "mmlu_eval_accuracy_high_school_physics": 0.17647058823529413, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.4230769230769231, "mmlu_eval_accuracy_human_aging": 0.6086956521739131, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.36363636363636365, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6046511627906976, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5151515151515151, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.22580645161290322, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.3548387096774194, "mmlu_eval_accuracy_professional_psychology": 0.43478260869565216, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.45454545454545453, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.6111111111111112, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0120855229213717, "step": 1200 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.5031, "step": 1210 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.5928, "step": 1220 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.5746, "step": 1230 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.572, "step": 1240 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.5716, "step": 1250 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.4872, "step": 1260 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.6716, "step": 1270 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.6052, "step": 1280 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.5711, "step": 1290 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.7097, "step": 1300 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.5536, "step": 1310 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.7815, "step": 1320 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.6709, "step": 1330 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.5422, "step": 1340 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.566, "step": 1350 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.4571, "step": 1360 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.6572, "step": 1370 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.5951, "step": 1380 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.6753, "step": 1390 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.6247, "step": 1400 }, { "epoch": 0.57, "eval_loss": 0.6076797842979431, "eval_runtime": 94.144, "eval_samples_per_second": 10.622, "eval_steps_per_second": 5.311, "step": 1400 }, { "epoch": 0.57, "mmlu_eval_accuracy": 0.434467608651013, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.25, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.45454545454545453, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.2, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, "mmlu_eval_accuracy_human_aging": 0.6086956521739131, "mmlu_eval_accuracy_human_sexuality": 0.25, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.5454545454545454, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9527658471161641, "step": 1400 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.6337, "step": 1410 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.5077, "step": 1420 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.5413, "step": 1430 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.6527, "step": 1440 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.6435, "step": 1450 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.5503, "step": 1460 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.5819, "step": 1470 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.6342, "step": 1480 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.5843, "step": 1490 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.5134, "step": 1500 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.5694, "step": 1510 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.6172, "step": 1520 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.5765, "step": 1530 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.591, "step": 1540 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.5039, "step": 1550 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.6288, "step": 1560 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.5196, "step": 1570 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.5867, "step": 1580 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.6002, "step": 1590 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.6534, "step": 1600 }, { "epoch": 0.65, "eval_loss": 0.6057603359222412, "eval_runtime": 94.1839, "eval_samples_per_second": 10.618, "eval_steps_per_second": 5.309, "step": 1600 }, { "epoch": 0.65, "mmlu_eval_accuracy": 0.4521968363152983, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.5454545454545454, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.4230769230769231, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.28, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.5454545454545454, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.8609263468582388, "step": 1600 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.5552, "step": 1610 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.4649, "step": 1620 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.5148, "step": 1630 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.4968, "step": 1640 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.5822, "step": 1650 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.4779, "step": 1660 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.6367, "step": 1670 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.7188, "step": 1680 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.5493, "step": 1690 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.5365, "step": 1700 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.6451, "step": 1710 }, { "epoch": 0.7, "learning_rate": 0.0002, "loss": 0.5231, "step": 1720 }, { "epoch": 0.7, "learning_rate": 0.0002, "loss": 0.7517, "step": 1730 }, { "epoch": 0.7, "learning_rate": 0.0002, "loss": 0.5724, "step": 1740 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.4755, "step": 1750 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.672, "step": 1760 }, { "epoch": 0.72, "learning_rate": 0.0002, "loss": 0.6718, "step": 1770 }, { "epoch": 0.72, "learning_rate": 0.0002, "loss": 0.6726, "step": 1780 }, { "epoch": 0.72, "learning_rate": 0.0002, "loss": 0.5012, "step": 1790 }, { "epoch": 0.73, "learning_rate": 0.0002, "loss": 0.4542, "step": 1800 }, { "epoch": 0.73, "eval_loss": 0.6079343557357788, "eval_runtime": 94.5927, "eval_samples_per_second": 10.572, "eval_steps_per_second": 5.286, "step": 1800 }, { "epoch": 0.73, "mmlu_eval_accuracy": 0.45560649806753273, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.18181818181818182, "mmlu_eval_accuracy_conceptual_physics": 0.3076923076923077, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.4634146341463415, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.6666666666666666, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6086956521739131, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.5454545454545454, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.09090909090909091, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.5882352941176471, "mmlu_eval_accuracy_prehistory": 0.37142857142857144, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.5454545454545454, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.9425534363398352, "step": 1800 }, { "epoch": 0.73, "learning_rate": 0.0002, "loss": 0.4603, "step": 1810 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.5112, "step": 1820 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.6551, "step": 1830 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.5428, "step": 1840 }, { "epoch": 0.75, "learning_rate": 0.0002, "loss": 0.634, "step": 1850 }, { "epoch": 0.75, "learning_rate": 0.0002, "loss": 0.538, "step": 1860 }, { "epoch": 0.76, "learning_rate": 0.0002, "loss": 0.5745, "step": 1870 }, { "epoch": 0.76, "learning_rate": 0.0002, "loss": 0.7127, "step": 1880 }, { "epoch": 0.77, "learning_rate": 0.0002, "loss": 0.6231, "step": 1890 }, { "epoch": 0.77, "learning_rate": 0.0002, "loss": 0.5608, "step": 1900 }, { "epoch": 0.77, "learning_rate": 0.0002, "loss": 0.6482, "step": 1910 }, { "epoch": 0.78, "learning_rate": 0.0002, "loss": 0.5111, "step": 1920 }, { "epoch": 0.78, "learning_rate": 0.0002, "loss": 0.6582, "step": 1930 }, { "epoch": 0.79, "learning_rate": 0.0002, "loss": 0.6121, "step": 1940 }, { "epoch": 0.79, "learning_rate": 0.0002, "loss": 0.6185, "step": 1950 }, { "epoch": 0.79, "learning_rate": 0.0002, "loss": 0.5918, "step": 1960 }, { "epoch": 0.8, "learning_rate": 0.0002, "loss": 0.5883, "step": 1970 }, { "epoch": 0.8, "learning_rate": 0.0002, "loss": 0.6027, "step": 1980 }, { "epoch": 0.81, "learning_rate": 0.0002, "loss": 0.4892, "step": 1990 }, { "epoch": 0.81, "learning_rate": 0.0002, "loss": 0.6467, "step": 2000 }, { "epoch": 0.81, "eval_loss": 0.6004832983016968, "eval_runtime": 93.9867, "eval_samples_per_second": 10.64, "eval_steps_per_second": 5.32, "step": 2000 }, { "epoch": 0.81, "mmlu_eval_accuracy": 0.4582647054610207, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.375, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.09090909090909091, "mmlu_eval_accuracy_conceptual_physics": 0.3076923076923077, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.4146341463414634, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6976744186046512, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.37142857142857144, "mmlu_eval_accuracy_professional_accounting": 0.41935483870967744, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.5454545454545454, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.8762637240612787, "step": 2000 }, { "epoch": 0.81, "learning_rate": 0.0002, "loss": 0.6325, "step": 2010 }, { "epoch": 0.82, "learning_rate": 0.0002, "loss": 0.5258, "step": 2020 }, { "epoch": 0.82, "learning_rate": 0.0002, "loss": 0.5538, "step": 2030 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.598, "step": 2040 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.5337, "step": 2050 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.5749, "step": 2060 }, { "epoch": 0.84, "learning_rate": 0.0002, "loss": 0.664, "step": 2070 }, { "epoch": 0.84, "learning_rate": 0.0002, "loss": 0.6095, "step": 2080 }, { "epoch": 0.85, "learning_rate": 0.0002, "loss": 0.5729, "step": 2090 }, { "epoch": 0.85, "learning_rate": 0.0002, "loss": 0.6395, "step": 2100 }, { "epoch": 0.85, "learning_rate": 0.0002, "loss": 0.5581, "step": 2110 }, { "epoch": 0.86, "learning_rate": 0.0002, "loss": 0.6305, "step": 2120 }, { "epoch": 0.86, "learning_rate": 0.0002, "loss": 0.6186, "step": 2130 }, { "epoch": 0.87, "learning_rate": 0.0002, "loss": 0.4686, "step": 2140 }, { "epoch": 0.87, "learning_rate": 0.0002, "loss": 0.6395, "step": 2150 }, { "epoch": 0.87, "learning_rate": 0.0002, "loss": 0.5673, "step": 2160 }, { "epoch": 0.88, "learning_rate": 0.0002, "loss": 0.5648, "step": 2170 }, { "epoch": 0.88, "learning_rate": 0.0002, "loss": 0.5265, "step": 2180 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.542, "step": 2190 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.488, "step": 2200 }, { "epoch": 0.89, "eval_loss": 0.598466694355011, "eval_runtime": 93.9641, "eval_samples_per_second": 10.642, "eval_steps_per_second": 5.321, "step": 2200 }, { "epoch": 0.89, "mmlu_eval_accuracy": 0.453684883010787, "mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.17647058823529413, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.09090909090909091, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5151515151515151, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.34285714285714286, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.34782608695652173, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.6111111111111112, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.9464586163158516, "step": 2200 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.5428, "step": 2210 }, { "epoch": 0.9, "learning_rate": 0.0002, "loss": 0.6717, "step": 2220 }, { "epoch": 0.9, "learning_rate": 0.0002, "loss": 0.6128, "step": 2230 }, { "epoch": 0.91, "learning_rate": 0.0002, "loss": 0.5053, "step": 2240 }, { "epoch": 0.91, "learning_rate": 0.0002, "loss": 0.5135, "step": 2250 }, { "epoch": 0.91, "learning_rate": 0.0002, "loss": 0.5352, "step": 2260 }, { "epoch": 0.92, "learning_rate": 0.0002, "loss": 0.5411, "step": 2270 }, { "epoch": 0.92, "learning_rate": 0.0002, "loss": 0.7386, "step": 2280 }, { "epoch": 0.93, "learning_rate": 0.0002, "loss": 0.5334, "step": 2290 }, { "epoch": 0.93, "learning_rate": 0.0002, "loss": 0.5402, "step": 2300 }, { "epoch": 0.94, "learning_rate": 0.0002, "loss": 0.7309, "step": 2310 }, { "epoch": 0.94, "learning_rate": 0.0002, "loss": 0.7377, "step": 2320 }, { "epoch": 0.94, "learning_rate": 0.0002, "loss": 0.4948, "step": 2330 }, { "epoch": 0.95, "learning_rate": 0.0002, "loss": 0.5601, "step": 2340 }, { "epoch": 0.95, "learning_rate": 0.0002, "loss": 0.5611, "step": 2350 }, { "epoch": 0.96, "learning_rate": 0.0002, "loss": 0.5769, "step": 2360 }, { "epoch": 0.96, "learning_rate": 0.0002, "loss": 0.4425, "step": 2370 }, { "epoch": 0.96, "learning_rate": 0.0002, "loss": 0.5148, "step": 2380 }, { "epoch": 0.97, "learning_rate": 0.0002, "loss": 0.5422, "step": 2390 }, { "epoch": 0.97, "learning_rate": 0.0002, "loss": 0.5161, "step": 2400 }, { "epoch": 0.97, "eval_loss": 0.6037020683288574, "eval_runtime": 94.2295, "eval_samples_per_second": 10.612, "eval_steps_per_second": 5.306, "step": 2400 }, { "epoch": 0.97, "mmlu_eval_accuracy": 0.4454679892995579, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.5625, "mmlu_eval_accuracy_business_ethics": 0.7272727272727273, "mmlu_eval_accuracy_clinical_knowledge": 0.3103448275862069, "mmlu_eval_accuracy_college_biology": 0.25, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.5454545454545454, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.18181818181818182, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.5, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.2, "mmlu_eval_accuracy_high_school_biology": 0.28125, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.6363636363636364, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.65, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454, "mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154, "mmlu_eval_accuracy_human_aging": 0.6086956521739131, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.09090909090909091, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.8181818181818182, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5151515151515151, "mmlu_eval_accuracy_philosophy": 0.5588235294117647, "mmlu_eval_accuracy_prehistory": 0.2857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, "mmlu_eval_accuracy_professional_law": 0.3176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.37037037037037035, "mmlu_eval_accuracy_sociology": 0.5454545454545454, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.8421052631578947, "mmlu_loss": 0.8906538285723554, "step": 2400 }, { "epoch": 0.98, "learning_rate": 0.0002, "loss": 0.5139, "step": 2410 }, { "epoch": 0.98, "learning_rate": 0.0002, "loss": 0.5291, "step": 2420 }, { "epoch": 0.98, "learning_rate": 0.0002, "loss": 0.6079, "step": 2430 }, { "epoch": 0.99, "learning_rate": 0.0002, "loss": 0.5692, "step": 2440 }, { "epoch": 0.99, "learning_rate": 0.0002, "loss": 0.6136, "step": 2450 }, { "epoch": 1.0, "learning_rate": 0.0002, "loss": 0.5858, "step": 2460 }, { "epoch": 1.0, "learning_rate": 0.0002, "loss": 0.4679, "step": 2470 }, { "epoch": 1.0, "learning_rate": 0.0002, "loss": 0.5018, "step": 2480 }, { "epoch": 1.01, "learning_rate": 0.0002, "loss": 0.551, "step": 2490 }, { "epoch": 1.01, "learning_rate": 0.0002, "loss": 0.528, "step": 2500 }, { "epoch": 1.02, "learning_rate": 0.0002, "loss": 0.4489, "step": 2510 }, { "epoch": 1.02, "learning_rate": 0.0002, "loss": 0.4718, "step": 2520 }, { "epoch": 1.02, "learning_rate": 0.0002, "loss": 0.4079, "step": 2530 }, { "epoch": 1.03, "learning_rate": 0.0002, "loss": 0.4827, "step": 2540 }, { "epoch": 1.03, "learning_rate": 0.0002, "loss": 0.5017, "step": 2550 }, { "epoch": 1.04, "learning_rate": 0.0002, "loss": 0.4425, "step": 2560 }, { "epoch": 1.04, "learning_rate": 0.0002, "loss": 0.4271, "step": 2570 }, { "epoch": 1.04, "learning_rate": 0.0002, "loss": 0.5164, "step": 2580 }, { "epoch": 1.05, "learning_rate": 0.0002, "loss": 0.3981, "step": 2590 }, { "epoch": 1.05, "learning_rate": 0.0002, "loss": 0.645, "step": 2600 }, { "epoch": 1.05, "eval_loss": 0.6178489327430725, "eval_runtime": 94.1423, "eval_samples_per_second": 10.622, "eval_steps_per_second": 5.311, "step": 2600 }, { "epoch": 1.05, "mmlu_eval_accuracy": 0.461544966521083, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.3793103448275862, "mmlu_eval_accuracy_college_biology": 0.3125, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.3125, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.6363636363636364, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.17647058823529413, "mmlu_eval_accuracy_high_school_psychology": 0.8, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.5454545454545454, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6976744186046512, "mmlu_eval_accuracy_moral_disputes": 0.39473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.5882352941176471, "mmlu_eval_accuracy_prehistory": 0.37142857142857144, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9348930491732711, "step": 2600 }, { "epoch": 1.06, "learning_rate": 0.0002, "loss": 0.5278, "step": 2610 }, { "epoch": 1.06, "learning_rate": 0.0002, "loss": 0.4388, "step": 2620 }, { "epoch": 1.06, "learning_rate": 0.0002, "loss": 0.5069, "step": 2630 }, { "epoch": 1.07, "learning_rate": 0.0002, "loss": 0.362, "step": 2640 }, { "epoch": 1.07, "learning_rate": 0.0002, "loss": 0.473, "step": 2650 }, { "epoch": 1.08, "learning_rate": 0.0002, "loss": 0.4701, "step": 2660 }, { "epoch": 1.08, "learning_rate": 0.0002, "loss": 0.3107, "step": 2670 }, { "epoch": 1.08, "learning_rate": 0.0002, "loss": 0.4745, "step": 2680 }, { "epoch": 1.09, "learning_rate": 0.0002, "loss": 0.5246, "step": 2690 }, { "epoch": 1.09, "learning_rate": 0.0002, "loss": 0.4257, "step": 2700 }, { "epoch": 1.1, "learning_rate": 0.0002, "loss": 0.5087, "step": 2710 }, { "epoch": 1.1, "learning_rate": 0.0002, "loss": 0.5063, "step": 2720 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.3647, "step": 2730 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.4308, "step": 2740 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.5247, "step": 2750 }, { "epoch": 1.12, "learning_rate": 0.0002, "loss": 0.4857, "step": 2760 }, { "epoch": 1.12, "learning_rate": 0.0002, "loss": 0.3833, "step": 2770 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.4455, "step": 2780 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.3938, "step": 2790 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.4697, "step": 2800 }, { "epoch": 1.13, "eval_loss": 0.6199526190757751, "eval_runtime": 94.2538, "eval_samples_per_second": 10.61, "eval_steps_per_second": 5.305, "step": 2800 }, { "epoch": 1.13, "mmlu_eval_accuracy": 0.46040539210666037, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.5454545454545454, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.5454545454545454, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.7093023255813954, "mmlu_eval_accuracy_moral_disputes": 0.39473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.1935483870967742, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.6111111111111112, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9342371760612213, "step": 2800 } ], "max_steps": 5000, "num_train_epochs": 3, "total_flos": 2.3639068475958067e+17, "trial_name": null, "trial_params": null }