# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for MiniCPMV. """ from typing import List, Optional, Union import torch import re from transformers.image_utils import ImageInput from transformers.processing_utils import ProcessorMixin from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from transformers.utils import TensorType from .image_processing_minicpmv import MiniCPMVBatchFeature class MiniCPMVProcessor(ProcessorMixin): r""" Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor. [`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the [`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information. Args: image_processor ([`MiniCPMVImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerWrapper`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor=None, tokenizer=None): super().__init__(image_processor, tokenizer) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], images: ImageInput = None, padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, do_pad: Optional[bool] = True, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, ) -> MiniCPMVBatchFeature: if images is not None: image_inputs = self.image_processor(images, do_pad=do_pad, return_tensors=return_tensors) return self._convert_images_texts_to_inputs(image_inputs, text, max_length=max_length, return_tensors=return_tensors) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ output_ids = args[0] result_text = [] for result in output_ids: result = result[result != 0] if result[0] == self.tokenizer.bos_id: result = result[1:] if result[-1] == self.tokenizer.eos_id: result = result[:-1] result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip()) return result_text # return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ result = args[0] result = result[result != 0] if result[0] == self.tokenizer.bos_id: result = result[1:] if result[-1] == self.tokenizer.eos_id: result = result[:-1] return self.tokenizer.decode(result, *args[1:], **kwargs).strip() def _convert( self, input_str, max_inp_length: Optional[int] = None ): if self.tokenizer.add_bos_token: input_ids = self.tokenizer.encode(input_str) else: input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str) if max_inp_length is not None: input_ids = input_ids[:max_inp_length] input_ids = torch.tensor(input_ids, dtype=torch.int32) image_start_tokens = torch.where(input_ids == self.tokenizer.im_start_id)[0] image_start_tokens += 1 image_end_tokens = torch.where(input_ids == self.tokenizer.im_end_id)[0] valid_image_nums = max(len(image_start_tokens), len(image_end_tokens)) image_bounds = torch.hstack( [ image_start_tokens[:valid_image_nums].unsqueeze(-1), image_end_tokens[:valid_image_nums].unsqueeze(-1), ] ) return input_ids.unsqueeze(0), image_bounds def _convert_images_texts_to_inputs(self, images, texts, do_pad=False, truncation=None, max_length=None, return_tensors=None): if not len(images): model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=do_pad, truncation=truncation, max_length=max_length) return MiniCPMVBatchFeature(data={**model_inputs}) pattern = "(./)" images, image_sizes = images["pixel_values"], images["image_sizes"] image_tags = re.findall(pattern, texts) assert len(image_tags) == len(image_sizes[0]) text_chunks = texts.split(pattern) final_texts = "" for i in range(len(image_tags)): final_texts = final_texts + text_chunks[i] + self.image_processor.get_slice_image_placeholder(image_sizes[0][i]) final_texts += text_chunks[-1] input_ids, image_bounds = self._convert(final_texts, max_length) return MiniCPMVBatchFeature(data={ "input_ids": input_ids, "pixel_values": images, "image_sizes": image_sizes, "image_bounds": [image_bounds] }, tensor_type=return_tensors) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))