ernestum commited on
Commit
b917ace
·
1 Parent(s): 3427c9b

Initial commit

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 543.10 +/- 331.56
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
@@ -37,15 +37,21 @@ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
 
38
  ```
39
  # Download model and save it into the logs/ folder
40
- python -m utils.load_from_hub --algo ppo --env seals/Humanoid-v0 -orga HumanCompatibleAI -f logs/
41
  python enjoy.py --algo ppo --env seals/Humanoid-v0 -f logs/
42
  ```
43
 
 
 
 
 
 
 
44
  ## Training (with the RL Zoo)
45
  ```
46
  python train.py --algo ppo --env seals/Humanoid-v0 -f logs/
47
  # Upload the model and generate video (when possible)
48
- python -m utils.push_to_hub --algo ppo --env seals/Humanoid-v0 -f logs/ -orga HumanCompatibleAI
49
  ```
50
 
51
  ## Hyperparameters
@@ -61,11 +67,17 @@ OrderedDict([('batch_size', 256),
61
  ('n_epochs', 20),
62
  ('n_steps', 2048),
63
  ('n_timesteps', 10000000.0),
64
- ('normalize', True),
 
65
  ('policy', 'MlpPolicy'),
66
  ('policy_kwargs',
67
- 'dict(activation_fn=nn.ReLU, net_arch=[dict(pi=[256, 256], '
68
- 'vf=[256, 256])])'),
 
69
  ('vf_coef', 0.819262464558427),
70
- ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
 
 
 
 
71
  ```
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 2242.51 +/- 858.20
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
37
 
38
  ```
39
  # Download model and save it into the logs/ folder
40
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/Humanoid-v0 -orga HumanCompatibleAI -f logs/
41
  python enjoy.py --algo ppo --env seals/Humanoid-v0 -f logs/
42
  ```
43
 
44
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
45
+ ```
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/Humanoid-v0 -orga HumanCompatibleAI -f logs/
47
+ rl_zoo3 enjoy --algo ppo --env seals/Humanoid-v0 -f logs/
48
+ ```
49
+
50
  ## Training (with the RL Zoo)
51
  ```
52
  python train.py --algo ppo --env seals/Humanoid-v0 -f logs/
53
  # Upload the model and generate video (when possible)
54
+ python -m rl_zoo3.push_to_hub --algo ppo --env seals/Humanoid-v0 -f logs/ -orga HumanCompatibleAI
55
  ```
56
 
57
  ## Hyperparameters
 
67
  ('n_epochs', 20),
68
  ('n_steps', 2048),
69
  ('n_timesteps', 10000000.0),
70
+ ('normalize',
71
+ {'gamma': 0.999, 'norm_obs': False, 'norm_reward': True}),
72
  ('policy', 'MlpPolicy'),
73
  ('policy_kwargs',
74
+ {'activation_fn': <class 'torch.nn.modules.activation.ReLU'>,
75
+ 'features_extractor_class': <class 'imitation.policies.base.NormalizeFeaturesExtractor'>,
76
+ 'net_arch': [{'pi': [256, 256], 'vf': [256, 256]}]}),
77
  ('vf_coef', 0.819262464558427),
78
+ ('normalize_kwargs',
79
+ {'norm_obs': {'gamma': 0.999,
80
+ 'norm_obs': False,
81
+ 'norm_reward': True},
82
+ 'norm_reward': False})])
83
  ```
args.yml CHANGED
@@ -1,6 +1,8 @@
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - ppo
 
 
4
  - - device
5
  - cpu
6
  - - env
@@ -16,7 +18,7 @@
16
  - - hyperparams
17
  - null
18
  - - log_folder
19
- - seals_experts_wandb_oldpickle/seed_7/
20
  - - log_interval
21
  - -1
22
  - - max_total_trials
@@ -41,6 +43,8 @@
41
  - null
42
  - - optimize_hyperparameters
43
  - false
 
 
44
  - - pruner
45
  - median
46
  - - sampler
@@ -50,13 +54,13 @@
50
  - - save_replay_buffer
51
  - false
52
  - - seed
53
- - 7
54
  - - storage
55
  - null
56
  - - study_name
57
  - null
58
  - - tensorboard_log
59
- - runs/seals/Humanoid-v0__ppo__7__1658848398
60
  - - track
61
  - true
62
  - - trained_agent
@@ -70,6 +74,8 @@
70
  - - verbose
71
  - 1
72
  - - wandb_entity
73
- - null
74
  - - wandb_project_name
75
- - seals-experts-oldpickle
 
 
 
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - ppo
4
+ - - conf_file
5
+ - hyperparams/python/ppo.py
6
  - - device
7
  - cpu
8
  - - env
 
18
  - - hyperparams
19
  - null
20
  - - log_folder
21
+ - logs
22
  - - log_interval
23
  - -1
24
  - - max_total_trials
 
43
  - null
44
  - - optimize_hyperparameters
45
  - false
46
+ - - progress
47
+ - false
48
  - - pruner
49
  - median
50
  - - sampler
 
54
  - - save_replay_buffer
55
  - false
56
  - - seed
57
+ - 4
58
  - - storage
59
  - null
60
  - - study_name
61
  - null
62
  - - tensorboard_log
63
+ - runs/seals/Humanoid-v0__ppo__4__1672507667
64
  - - track
65
  - true
66
  - - trained_agent
 
74
  - - verbose
75
  - 1
76
  - - wandb_entity
77
+ - ernestum
78
  - - wandb_project_name
79
+ - seals-experts-normalized
80
+ - - yaml_file
81
+ - null
config.yml CHANGED
@@ -22,10 +22,20 @@
22
  - - n_timesteps
23
  - 10000000.0
24
  - - normalize
25
- - true
 
 
26
  - - policy
27
  - MlpPolicy
28
  - - policy_kwargs
29
- - dict(activation_fn=nn.ReLU, net_arch=[dict(pi=[256, 256], vf=[256, 256])])
 
 
 
 
 
 
 
 
30
  - - vf_coef
31
  - 0.819262464558427
 
22
  - - n_timesteps
23
  - 10000000.0
24
  - - normalize
25
+ - gamma: 0.999
26
+ norm_obs: false
27
+ norm_reward: true
28
  - - policy
29
  - MlpPolicy
30
  - - policy_kwargs
31
+ - activation_fn: !!python/name:torch.nn.modules.activation.ReLU ''
32
+ features_extractor_class: !!python/name:imitation.policies.base.NormalizeFeaturesExtractor ''
33
+ net_arch:
34
+ - pi:
35
+ - 256
36
+ - 256
37
+ vf:
38
+ - 256
39
+ - 256
40
  - - vf_coef
41
  - 0.819262464558427
ppo-seals-Humanoid-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3057fa4d605be69cb69884ae3775fc932a953d6fd2ec70d6cb61a54ccb592858
3
- size 4019902
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc73fd0755a1de9e7bee9a436c0cefff3ba002b99cd9e03ebf6b26eed3422f3b
3
+ size 4024138
ppo-seals-Humanoid-v0/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.0
 
1
+ 1.6.2
ppo-seals-Humanoid-v0/data CHANGED
@@ -4,24 +4,24 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe5624f08b0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe5624f0940>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe5624f09d0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe5624f0a60>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fe5624f0af0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fe5624f0b80>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe5624f0c10>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fe5624f0ca0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe5624f0d30>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe5624f0dc0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe5624f0e50>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fe5624e6e70>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
- ":serialized:": "gAWVbAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoTQABTQABZYwCdmaUXZQoTQABTQABZXVhdS4=",
25
  "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
26
  "net_arch": [
27
  {
@@ -34,7 +34,8 @@
34
  256
35
  ]
36
  }
37
- ]
 
38
  },
39
  "observation_space": {
40
  ":type:": "<class 'gym.spaces.box.Box'>",
@@ -51,7 +52,7 @@
51
  },
52
  "action_space": {
53
  ":type:": "<class 'gym.spaces.box.Box'>",
54
- ":serialized:": "gAWVgQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWRAAAAAAAAADNzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvpRoCksRhZSMAUOUdJRSlIwEaGlnaJRoEiiWRAAAAAAAAADNzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPpRoCksRhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolhEAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLEYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYRAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBlGghSxGFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
55
  "dtype": "float32",
56
  "_shape": [
57
  17
@@ -66,17 +67,17 @@
66
  "num_timesteps": 10000384,
67
  "_total_timesteps": 10000000,
68
  "_num_timesteps_at_start": 0,
69
- "seed": 0,
70
  "action_noise": null,
71
- "start_time": 1658848401.8666394,
72
  "learning_rate": {
73
  ":type:": "<class 'function'>",
74
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPvVLt1xWoSWFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
75
  },
76
- "tensorboard_log": "runs/seals/Humanoid-v0__ppo__7__1658848398/seals-Humanoid-v0",
77
  "lr_schedule": {
78
  ":type:": "<class 'function'>",
79
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPvVLt1xWoSWFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
80
  },
81
  "_last_obs": null,
82
  "_last_episode_starts": {
@@ -85,7 +86,7 @@
85
  },
86
  "_last_original_obs": {
87
  ":type:": "<class 'numpy.ndarray'>",
88
- ":serialized:": "gAWVRgwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbQCwAAAAAAALj5FQ7VaXK/nWWjFTEmgT+ZEJ105V32P/vaQ7z4/+8/8Q5f6+7HI7+u/GBG//FkPxdVd5IQ4UM/ewLf+wLBcr8kTK5Eeddtv0MbZdJeJYA/QDh+Yvd5Sb/eZdKF5Gt9P1y6awyPTmM/OmMeyOY5gr//5TD+nSuDv+tkRDQBvII/gypKeIidgb+Um1fBXZNiP3RSMN858nu/UPuKcgPdUj8eSCh2ErF1P+k5Sm2J9Xa/bMA7d6SMdD/+VMXyQkWAv3qri+PwN30/SCvxwY4SVr8X21f/lZOAvzS8N3+Tnm2/ZluFW7aya78AUSsXbedoP9iKqFOBHG6/HIaN+QhahL+mGX0JIJWBv7iXqtgWT2e/tClk2xl3b79Bgog95eCCP6iKlhZkOl8/ZrIiTpHEeT/gxnet3OxPv2E05ZnWeIE/GjcMjTdsfr+OmErsZil4P3w1jXSxLWg/TnFPZbX6fD+R2sx9LR2AvxAHS122HmK/TRt5Mudeg78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALYIz9Ot2gFABLUZRmvIAUDvBL+UcFqiPz75M/SSNDi/Wb37N+GOsT/gict180mGP1Ych3jwl8K/0atKoiRplr+3QxrC45wQQMOO3ofnpCBA7s3Oxdl2tj/U2vzWDOK1P7gHQswB7YE/R6yP1QvKJL+v7jIBYsyFP1azbgSmH1I/xaLEtLRrq7+nE+DPdcZ2v0PFvJ645Nk//T2EXThJAEBzRNfRyqymP+oZhFsP1aU/qagDpk2ZqT9jdyZ6oXlCv4S7CYa3fII/ouLnzz/rMT9owWFvOTDRvxBLpKruGYe/BsdAxF4uyT8cGW4GQWkXQIJgdHEsrs8/XnyznOPAyj+RkMBpPNaqP1Js8dD8Yoa/x084t8h7lL/HwPkkNRGzvzyXm5afRL2/QamwZdCr27+tOur4AKHpv3vwbGsrGhJAWFM+zcv36z95N9WyqF7rPyaNIBPEzJk/ufJI/Srid7/5d5RJ0RGjv8fT/qF4ksC/9yKdS375sL9/SXSWvKLNv/44M72Glfe/b7tbPFkPBUCBIqoWgJrwP5tW1pUnafA/iKpEePLgkj+nFHVi82Bwv0N1bd4E96G/d8VXgbnFvb8nR2U/+aOnvxeSHx/RlsO/jWWerHp89b+7ssy+Okb8P3BQvtmJdM8/PFtEtT9myj9+b2zhcs+qP9V6IErjUYQ/zqPY5yGskb8xZYESBGCzPwpta4qlYrq/K43sEC3a2z+Y3wDZyWvpv3vwbGsrGhJA/AeVAV386z+q7kOP6zTrP9KRg6uSrJ0/yWVX6MZ5cT+0+Murj5iYv+XDajrua8I/h7Z1H8hrpr8DBFLTcnHQP19xOGBWhve/b7tbPFkPBUAotQI57p3wPwM0sXdpVfA/SDEf+4/Tlj8/DQu7nzVjPzUVJ5U+CpK/179C3sxRwT/Esna7+ciXv+DzogPL1cY/NLLqWuhx9b+7ssy+Okb8P2FXdxEl1do/eHwpAvW41D8WK6YznWO+PzksstzqRJ8/tYiPNdUtpb+JU9AJySLGP+DiWFu+kro/8tDZxoPT2b8Q1RpN0mXmP2z8deREgfk/2sSp/huP1D/54QFLms/VP26JP41EtsU/M4oqg7pjsz8PZz4SiW3Dv1bBx/KNM8A/5BNU7W4M1T8iLn/BDp3Sv2o40gU8OuE/w96z2Gks8z+hlPVmi2HaP/+SdmWajtQ/64pq79IOvT/jH14RWgSev6e4OkqvmaS/VOXMWE6Cxb+p7b0Kggm6Pyt2/0GyN9k/mjW7qHZP5j9s/HXkRIH5PyP3Y/eQD9Q/uaQeiSeK1T+0rI11QXbFP+eh2d8sEbO/zIMaJf9Mw79vStQt2Hq/v5XwH97hHNU/OmJ9t21F0j8hqesOtAzhP8Pes9hpLPM/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAy3prNkN1bb/yh7D79Llrv/v2Rng8EGk/op5IQKvFgT/cJp8puCpovwocBvWPfYC/3AkGRvbDbb+9tmynEkmLv/Nrnmq6F0S/wfujZyAphz/kKARmXgtpv5DhtT1c53+/C2h8hf4Fib+4MjYn8DmLv2lkNl8H7kW/G7127i4nhz/GdbZLKDtxvw6rIAd2AIC/ftBfSDXfjr9gCtyaCY1wv6anpHdQS3K/8cKKIaUTiD+Zb0bVgY1xv3lW6nmjFoG/7Fcil1jbjr9RUcUhk1t4v0nnmrLQWHK/NQs4QZmOhj9gmCUs2ZBxv6yqZYns/YC/7Fcil1jbjr9RUcUhk1t4v0nnmrLQWHK/NQs4QZmOhj9gmCUs2ZBxv6yqZYns/YC/MKm5Xgzakr+k5BJNSH9zv66x3yu3yjo/BgboIFd3hz8piGC+4Ppwv0VjNOwOZX6/amzVXOjBkr/84pnRa9ZlPwswk6JziEE/WZakmWdmjT+iuAjXzR1xv7FLzkzWBn+/amzVXOjBkr/84pnRa9ZlPwswk6JziEE/WZakmWdmjT+iuAjXzR1xv7FLzkzWBn+//1sHeNUsVD/f1gW5yfBovzYCbQnl434/UHEnEBanfz+TZzTlJug4v+AGebiWln2/iLhMyCo9VD+2sq02pWuAvzCH3wk6wIk/Izk7YMZGfz8hQTObwMxTv1M/GE2FeIC/JgkRmAuXhL+cQJ4kAbhcvz0B9eQmelu/ZTJ5VKfUfD/yS//vVRh6vzH/kOeVp3y/+NpgM215hL8HpPQ5GFl0P8G1fwXYY3Q/dj4cG08LfT/U3xvpGXJ+v3V/Zy1RQ3i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAU16AYaUjAFDlHSUUpQu"
89
  },
90
  "_episode_num": 0,
91
  "use_sde": false,
@@ -93,7 +94,7 @@
93
  "_current_progress_remaining": -3.8399999999993994e-05,
94
  "ep_info_buffer": {
95
  ":type:": "<class 'collections.deque'>",
96
- ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIA9GTMnm2skCUhpRSlIwBbJRN6AOMAXSUR0Dmo4Vx0dR0dX2UKGgGaAloD0MIuynlteIHsUCUhpRSlGgVTegDaBZHQOajs2ygPEt1fZQoaAZoCWgPQwgdOGdEffaxQJSGlFKUaBVN6ANoFkdA5qQLHxSYPXV9lChoBmgJaA9DCCpXeJcbVK5AlIaUUpRoFU3oA2gWR0DmpDjoqTbGdX2UKGgGaAloD0MIasGLvp7esUCUhpRSlGgVTegDaBZHQOakkeoLofV1fZQoaAZoCWgPQwhJgJpa9sixQJSGlFKUaBVN6ANoFkdA5qTAJZ4fOnV9lChoBmgJaA9DCKz+CMMUR7FAlIaUUpRoFU3oA2gWR0DmpRmhB7eEdX2UKGgGaAloD0MInN8w0bDJsUCUhpRSlGgVTegDaBZHQOalR5lWfbt1fZQoaAZoCWgPQwhdNGQ8IpiwQJSGlFKUaBVN6ANoFkdA5qWhXVTaTXV9lChoBmgJaA9DCH5Uw37biLJAlIaUUpRoFU3oA2gWR0Dmpc8SlFc6dX2UKGgGaAloD0MILskBu+6YsUCUhpRSlGgVTegDaBZHQOamKHd43WF1fZQoaAZoCWgPQwi/YDdsmwR3QJSGlFKUaBVN6ANoFkdA5qZiH3cpLHV9lChoBmgJaA9DCIRFRZzmvrBAlIaUUpRoFU3oA2gWR0DmprpD4xk/dX2UKGgGaAloD0MI+7FJfiiksUCUhpRSlGgVTegDaBZHQOam6DNQj2V1fZQoaAZoCWgPQwhO02cHDKSwQJSGlFKUaBVN6ANoFkdA5qdA5Yoy9HV9lChoBmgJaA9DCAd5PZhUIbBAlIaUUpRoFU3oA2gWR0Dmp29vJiiJdX2UKGgGaAloD0MIb72mB91wskCUhpRSlGgVTegDaBZHQOanyTMRpUR1fZQoaAZoCWgPQwj5MeauKVKyQJSGlFKUaBVN6ANoFkdA5qf3QjMV13V9lChoBmgJaA9DCCGTjJwN/LFAlIaUUpRoFU3oA2gWR0DmqE/fICEIdX2UKGgGaAloD0MIL1G9NSx9skCUhpRSlGgVTegDaBZHQOaoff+VC5V1fZQoaAZoCWgPQwgsg2qDu5exQJSGlFKUaBVN6ANoFkdA5qjVoegctHV9lChoBmgJaA9DCITyPo5OSbJAlIaUUpRoFU3oA2gWR0DmqQSTM7lrdX2UKGgGaAloD0MIdVWgFntmsECUhpRSlGgVTegDaBZHQOapW8O9WZJ1fZQoaAZoCWgPQwi0jqomIFOxQJSGlFKUaBVN6ANoFkdA5qmK3XRPXXV9lChoBmgJaA9DCMVVZd+53LJAlIaUUpRoFU3oA2gWR0DmqeGOEM9bdX2UKGgGaAloD0MIUkZcAHIBskCUhpRSlGgVTegDaBZHQOaq4RChN/R1fZQoaAZoCWgPQwgZA+s4LnmyQJSGlFKUaBVN6ANoFkdA5qs5UbkwOHV9lChoBmgJaA9DCK2m64m+irFAlIaUUpRoFU3oA2gWR0Dmq2b7u2JBdX2UKGgGaAloD0MIQ3Bcxk03cECUhpRSlGgVTegDaBZHQOarz6XhOxl1fZQoaAZoCWgPQwhKDAIrL+WxQJSGlFKUaBVN6ANoFkdA5qv93OW0JHV9lChoBmgJaA9DCNi61AglcrFAlIaUUpRoFU3oA2gWR0DmrFdMKTjedX2UKGgGaAloD0MIy7xV16FkTUCUhpRSlGgVTegDaBZHQOaskOVTrE91fZQoaAZoCWgPQwi2LF+XHY2yQJSGlFKUaBVN6ANoFkdA5qzpXjdYXHV9lChoBmgJaA9DCEKxFTQlALJAlIaUUpRoFU3oA2gWR0DmrRhttQ9BdX2UKGgGaAloD0MIQE0tW5toskCUhpRSlGgVTegDaBZHQOatcZdld1N1fZQoaAZoCWgPQwii0R3EGpSyQJSGlFKUaBVN6ANoFkdA5q2fguIykHV9lChoBmgJaA9DCLUzTG1xM69AlIaUUpRoFU3oA2gWR0DmrfZPVNHpdX2UKGgGaAloD0MIuTgqN0nhskCUhpRSlGgVTegDaBZHQOauJO34Kx91fZQoaAZoCWgPQwgO3IE6kc6xQJSGlFKUaBVN6ANoFkdA5q58W1twaXV9lChoBmgJaA9DCAK7mjw5FbBAlIaUUpRoFU3oA2gWR0DmrqtNnoPkdX2UKGgGaAloD0MILjnulPKHsUCUhpRSlGgVTegDaBZHQOavA3114gR1fZQoaAZoCWgPQwiAuoECj/WxQJSGlFKUaBVN6ANoFkdA5q8yb+kxh3V9lChoBmgJaA9DCKysbYpPSbNAlIaUUpRoFU3oA2gWR0Dmr2E5ZKWcdX2UKGgGaAloD0MIQE0tW6fLsUCUhpRSlGgVTegDaBZHQOavuc3bVSZ1fZQoaAZoCWgPQwh5PC0/GMOxQJSGlFKUaBVN6ANoFkdA5q/n4y44InV9lChoBmgJaA9DCHNH/8tNObJAlIaUUpRoFU3oA2gWR0DmsD8rHU+cdX2UKGgGaAloD0MImKPH7wUSsUCUhpRSlGgVTegDaBZHQOawbZ4t6HF1fZQoaAZoCWgPQwgSF4BGgR6xQJSGlFKUaBVN6ANoFkdA5rDE24NI9XV9lChoBmgJaA9DCPt46LsPRLJAlIaUUpRoFU3oA2gWR0DmsPONEw36dX2UKGgGaAloD0MI1qpdE9r7sECUhpRSlGgVTegDaBZHQOaxSi6WgOB1fZQoaAZoCWgPQwgqWONsKlWyQJSGlFKUaBVN6ANoFkdA5rJI6SLZSXV9lChoBmgJaA9DCGdD/pn1t7JAlIaUUpRoFU3oA2gWR0DmsqERjBl+dX2UKGgGaAloD0MIAWvVrglsbUCUhpRSlGgVTegDaBZHQOay3uwFC9h1fZQoaAZoCWgPQwh7Ss6J9XqyQJSGlFKUaBVN6ANoFkdA5rM4iQcPv3V9lChoBmgJaA9DCMHlsWbwD7JAlIaUUpRoFU3oA2gWR0Dms2YHpr1vdX2UKGgGaAloD0MIotKImQ0kskCUhpRSlGgVTegDaBZHQOazv+MXJo11fZQoaAZoCWgPQwi0rzxIh+OyQJSGlFKUaBVN6ANoFkdA5rPtlRHf/HV9lChoBmgJaA9DCOGaO/rLZrFAlIaUUpRoFU3oA2gWR0DmtEbgUDdQdX2UKGgGaAloD0MIXaeRljZUskCUhpRSlGgVTegDaBZHQOa0dOeMAFR1fZQoaAZoCWgPQwj5E5UNmxuyQJSGlFKUaBVN6ANoFkdA5rTN0m2LHnV9lChoBmgJaA9DCEuQEVAV3rJAlIaUUpRoFU3oA2gWR0DmtPwmUnogdX2UKGgGaAloD0MIr7DgfiwUs0CUhpRSlGgVTegDaBZHQOa1VLuKGcp1fZQoaAZoCWgPQwg8akyI2ZGCQJSGlFKUaBVN6ANoFkdA5rWRJkPMCHV9lChoBmgJaA9DCNEDH4NVkIFAlIaUUpRoFU3oA2gWR0Dmte9Hc1wYdX2UKGgGaAloD0MI6pJxjMTyskCUhpRSlGgVTegDaBZHQOa2HhG+bmV1fZQoaAZoCWgPQwjB/uvcNC2yQJSGlFKUaBVN6ANoFkdA5rZ2M8PnS3V9lChoBmgJaA9DCBxEa0XT47BAlIaUUpRoFU3oA2gWR0DmtqTd7fHhdX2UKGgGaAloD0MIdcqjG0HKskCUhpRSlGgVTegDaBZHQOa2/S+vhZR1fZQoaAZoCWgPQwguPC8Ve0qxQJSGlFKUaBVN6ANoFkdA5rcsIakylHV9lChoBmgJaA9DCDc0Zaf/jq5AlIaUUpRoFU3oA2gWR0Dmt4NdHDrJdX2UKGgGaAloD0MIBFYOLWYMskCUhpRSlGgVTegDaBZHQOa3sarksBh1fZQoaAZoCWgPQwjhehSuM2qyQJSGlFKUaBVN6ANoFkdA5rgI7blA/3V9lChoBmgJaA9DCAiOy7hpR7JAlIaUUpRoFU3oA2gWR0DmuDeWhRIjdX2UKGgGaAloD0MIUPutnXSZskCUhpRSlGgVTegDaBZHQOa4jcijcmB1fZQoaAZoCWgPQwgNxR1v/imxQJSGlFKUaBVN6ANoFkdA5ri7eCCjDnV9lChoBmgJaA9DCKDGvfnNF7FAlIaUUpRoFU3oA2gWR0Dmud9oNd7fdX2UKGgGaAloD0MIhXzQs/W3sECUhpRSlGgVTegDaBZHQOa6DWKO1fF1fZQoaAZoCWgPQwjUm1HzKcCwQJSGlFKUaBVN6ANoFkdA5rpisOG0u3V9lChoBmgJaA9DCOAtkKBI57FAlIaUUpRoFU3oA2gWR0DmupEPtlZpdX2UKGgGaAloD0MIbECEuBYFsUCUhpRSlGgVTegDaBZHQOa65eLaVUx1fZQoaAZoCWgPQwhkc9U8X9CyQJSGlFKUaBVN6ANoFkdA5rsUtf5ULnV9lChoBmgJaA9DCMu76gEffLFAlIaUUpRoFU3oA2gWR0Dmu2kk4WDZdX2UKGgGaAloD0MIXcKhtyTqskCUhpRSlGgVTegDaBZHQOa7l8CvHLl1fZQoaAZoCWgPQwiR0JZz5Q6xQJSGlFKUaBVN6ANoFkdA5rvFgogFHXV9lChoBmgJaA9DCEM50a7y6bFAlIaUUpRoFU3oA2gWR0DmvBvWGyoodX2UKGgGaAloD0MI0VrR5hxBskCUhpRSlGgVTegDaBZHQOa8SbOC5Et1fZQoaAZoCWgPQwijPPNyHNqxQJSGlFKUaBVN6ANoFkdA5ryfuhsZYXV9lChoBmgJaA9DCE5+i07WFLJAlIaUUpRoFU3oA2gWR0DmvM3rLQokdX2UKGgGaAloD0MIVaGBWPoHs0CUhpRSlGgVTegDaBZHQOa9I781n/V1fZQoaAZoCWgPQwggmQ6d/tuyQJSGlFKUaBVN6ANoFkdA5r1Ro3irDXV9lChoBmgJaA9DCMDOTZv5wa9AlIaUUpRoFU3oA2gWR0DmvabtdiUgdX2UKGgGaAloD0MIveXqx2KssUCUhpRSlGgVTegDaBZHQOa91QEZBLR1fZQoaAZoCWgPQwg3wqIiqnayQJSGlFKUaBVN6ANoFkdA5r4qjpkf93V9lChoBmgJaA9DCDifOlYpNLJAlIaUUpRoFU3oA2gWR0DmvlhM36yjdX2UKGgGaAloD0MIu9QI/ThkskCUhpRSlGgVTegDaBZHQOa+reeYlY51fZQoaAZoCWgPQwgjLgCNclGyQJSGlFKUaBVN6ANoFkdA5r7b44Ia+HV9lChoBmgJaA9DCBUaiGW3kbJAlIaUUpRoFU3oA2gWR0DmvzHBY3efdX2UKGgGaAloD0MIWcLaGNfXsECUhpRSlGgVTegDaBZHQOa/X907r9l1fZQoaAZoCWgPQwjwoxr2k/exQJSGlFKUaBVN6ANoFkdA5r+1szMzM3V9lChoBmgJaA9DCM3K9iGLbLFAlIaUUpRoFU3oA2gWR0Dmv+I42jwhdWUu"
97
  },
98
  "ep_success_buffer": {
99
  ":type:": "<class 'collections.deque'>",
@@ -110,7 +111,7 @@
110
  "n_epochs": 20,
111
  "clip_range": {
112
  ":type:": "<class 'function'>",
113
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
114
  },
115
  "clip_range_vf": null,
116
  "normalize_advantage": true,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9616b2a790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9616b2a820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9616b2a8b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9616b2a940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9616b2a9d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9616b2aa60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9616b2aaf0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9616b2ab80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9616b2ac10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9616b2aca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9616b2ad30>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9616b22c60>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVwAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoTQABTQABZYwCdmaUXZQoTQABTQABZXVhjBhmZWF0dXJlc19leHRyYWN0b3JfY2xhc3OUjBdpbWl0YXRpb24ucG9saWNpZXMuYmFzZZSMGk5vcm1hbGl6ZUZlYXR1cmVzRXh0cmFjdG9ylJOUdS4=",
25
  "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
26
  "net_arch": [
27
  {
 
34
  256
35
  ]
36
  }
37
+ ],
38
+ "features_extractor_class": "<class 'imitation.policies.base.NormalizeFeaturesExtractor'>"
39
  },
40
  "observation_space": {
41
  ":type:": "<class 'gym.spaces.box.Box'>",
 
52
  },
53
  "action_space": {
54
  ":type:": "<class 'gym.spaces.box.Box'>",
55
+ ":serialized:": "gAWVgQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWRAAAAAAAAADNzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvpRoCksRhZSMAUOUdJRSlIwEaGlnaJRoEiiWRAAAAAAAAADNzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPpRoCksRhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolhEAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLEYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYRAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBlGghSxGFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAICuIjg/890SdD6/hx0SyzTMH9wiPPA23TdxNzxaWzsgq4D+wANEFezsPXFLwisxGZcC0dQFok/i5qCSkFC840nT6w+AFCsSMC7D1TUcEpOXFKyTi4gLlI689ADYHRI9Lsnsy0jrPnQJoXxF9XYyospdIC3wy/c5AKscETOyVXTGB7PePx9jtR0cMO3v5yvYCVO0aOTTAG9Be4ACMFnwixiNqdXs6GDHbmcmk9O0i0ZKbwBkvFUQYBQxSvoWu/b4RS9l3x4k3lDllT1m0JRKSZi75JjBCXSrwSI2qUsaFSKmFcHvgVcRm2MasgnkzLjjdSOOxEE58B5N0SrcfgJz1BWcGIOOX2Ui5LxP4pQAOo6f6bPGhdWsWMA3nT/kCsJaQ5WrWEyRpAJbm6sJ8Y2IJv1eoADfoqqjmpoT2E+/BcahNXCAZLlkOi0M8F1YaGQJKLZ6fcIZDRvoZuo1mYD8MhtDv9Q2OY+xtjlATDNDAjwcH17k4DXRhWkasZE1epqGhgXsNQpVVcp7Ilxtj8u0mFMvWFlyQmj4Y+FunprGW8rFH/YIckZcFX7TdmDnnMH6+NBWnuuuHdjvBitHYHL1H2mQlbmZMx6UDUf2ukqp4Abmp2CxM87yPZRkKJAl+jN6lY+oZ6YF/zwWISDdRi6KTLi2CDauwUDQNGx7l/BP+dG1+ughfiJZrL3ENQtkFXUuHUKAZ2ZgtEz75DmBO1/t7KOsY6/jqrOH9L6sSrzUnVclkgy0E8eBZuSHnUscj3Oh/dMOQsIHP2R0UMyp3nRqHw3jy84lmXPprV5WEk8YFYxNEE9SzzcQ/3SJtTFTpLwT2YjOt+bn46kVRvRr1gafdGU7rqcXt6EIMJaK7yv2mYsMzVoyFrValDBAzuIS43BSV7prLPj/f9ptMFppIS0e4bBTouyHxYlrbWzhDR5XKDTIZrVTk+ZOmJr7MTrD3dhw1/36x8FMh2sIkW1XGWzsJEmXpRTG0Ha3gum/If1tiwqNiy9YpRf57776BbqP1fTz0Lv5ClTrLtaD7WH/Ty3tsH6yrrDiAuVoVvBZZ8XLxVQOpGdgZPRoLEzT19flutwdCtgR/SGXI0g1XrkfAeogg3rF+FNxxi9sRa6tQ8uogsxqqZu7sTn3PmkC1Nm4Ea9XrJ/XA3teWjwfn7TV0QKiE+qxS/M/SxnNJ2fvHzUVVxgYnalokncEklUpcVdTxMXULtsqYqR6rMGMFBGOkZseFlhHEsXTlYvV0Akf0KjC/0uXvjQyvjzPuIE7FkUsCMJfBDM6Pqp97x+0bAmMpTP3tqV/3T0fgxN8Cx51KtrzMfrDYFarQ1IuQXa4w9zkS3+Hv5PKpmnixc6mWqMfPtjhBdZ64SXaMrq97zepsid5i9yhzCzup48zukKnRwJpa1RY7B2fUOOHRjmF8UkfW6mlQS2c/MB9K2aQncmYh8PWyc2dnGAWyM8ERm/jcbBeNSq5x9wlD6w7VE7bfb3sUwTQ7XncNPsDtVSdiIVtv3Kth0jRa3Q8BqmPXmFIwu37Jg7omHV4pb+MmsGWuQ0kYYNFM+yGxbZHj9J1hURWjQ4eLbO+W5ffUeycIWmXYxDogUitBq8r3jXsZ0Z+SGOjZ5isOy4OYaHqWttDw11UZ9rSkUpbl+XykHZy3VjPNvGlzjRjINkE3D8lTHfq2eeDilRPSPXREjCsgBNX1CDDmBzcahGz4vkKr7jCBvxT9FlVi0y0CLW9zZOf0xU3faxGEjOYjk/ajXXFBb/xIqMdGG7NCMFPRtz52UCPo2D4uk1UOyavJz7I0pTfEod2K3sQrWUdLdg3brvjRXPLEGhwBeDxW/unlNu4Py0gNEjQFB/YtjMAw848ExvNTLO8LD8xwMqc3j9JUNX63oi65zl/cyPKhfT+Z0XDq5poF+T7EJp4bC+7EF38yseIel0hr8aJAgnWYZHRuuVGHxc6lnJfH5rmorlusmaX2+CiJSnWmXa9vjpoYIQaLTPnruam0BBqx/bcu41z48uEd6gnFKOP3BIaIdUQ49/Ntyzzeuft4dohOypF1Hxe+L9/1CtasuG+UcIrnLZCnMB1gilwG28L/HdnW6TsRJ3slS+pvwMfQS3iI1mmQ/SFDIf14FmGT0NTt1LgWSoWThmm6sOAICOd1HVNxyETEV/X8usjLPuuLydEGmxLuZrbaB7LA+cH9m1sYqEOGsfl2LTHJ+n0kYoot8FmSmbnc+FNGOULUf7aNtVcuTi3o/oZgM9nII6K6NvDfWpdLgRkgWylsIrGnQdlq11hTzCMLbSJ+i7EVd1/wDzULXXPMfAJdF2tj3HQ+gSAqdLoBIMoCAxjhHEBy1EWlncVoplH9u8+6aoyYSfoAGBKsE7xplxmDFC7bsnIEBAQ7dcdP4HMjSWRQ9DOf0RZcD1VbArdxXS3p4uUetjcdmdlPtJqLBaAhEBEsO/GoRz47sasw02j2AEQxA3bjkrC+Rj17OsAOa42qTb6pS0iThBiFcsMoTFfNdNuZGJI9YdX5DFB7eYuRXPoMl9rDwa29UYyVD2fVoK1YCc2gQ17YYZXykRLJa0PzKSkgIu+ADk5kbLU+koTBQJZruyn1OB0xHgsVi4vvRvo/dxQFyVC/64yYx7JkCQsne2vkKXCUzvNqgGwvT1fI3fKVsTBRc3VA5Bifrpp3l7IeGjFOP0DPq8Pr0LeUVEgTbFSKFTxHKQQJAd73ZVKabJFx9Rx+OSuPS3ZzYmErLzTx20/yCeOlbrRPlE1Dfvb+UCY0LG27h/WTm2FP/F01hNkz5rN4jBugNG00YGlIC0JDfExTLL729fjen5AwPcozDBjiHYKZZtdaqE49DSLvW/PHn0w37OP/szXg+hC63r8vp8Yaepqr1jKqaG7Y0Gm5OuvxPuGH+sapzpVcRr+qQ1MSphav1HRs65Pewo8nHh/W40H3TBqehs8Igg+25Cp35LbHeon2m6QxFrGj86XrvEXn6cJD5CRfKKKhKyD+3sxJF8TUe+SBqCPDxVqy6f9IsI16f09JAi2e6rPLoE5479B1A4XSsQXEFOHlwklIYXxWJZwuLFj3ulbtMxJtWwALnWAO+zcBKPIXrJv7TjcmzJFqPAO7aOl/ZR71QWTsjgGGhGwgax8EfeVvCw8CLVp7XWPg5lzACXQvw480SOd0fFiv0ZzaIubvUpAIUTwb4jvUte5NZAMB1BQ7Uw09lGcI8HHEFMR4Cefca6wT1fsa5bf1J/NAh2wzyJxYEyLK0MDaE2EXsS5tJSWBkvhYJlVjn5S5MPmZ47jDSrV/9BKDQDHRVEHZVYh2XsjZFYF/OdeqOf997UrAo9yBZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
56
  "dtype": "float32",
57
  "_shape": [
58
  17
 
67
  "num_timesteps": 10000384,
68
  "_total_timesteps": 10000000,
69
  "_num_timesteps_at_start": 0,
70
+ "seed": 8,
71
  "action_noise": null,
72
+ "start_time": 1672507673181022961,
73
  "learning_rate": {
74
  ":type:": "<class 'function'>",
75
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPvVLt1xWoSWFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
76
  },
77
+ "tensorboard_log": "runs/seals/Humanoid-v0__ppo__4__1672507667/seals-Humanoid-v0",
78
  "lr_schedule": {
79
  ":type:": "<class 'function'>",
80
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPvVLt1xWoSWFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
81
  },
82
  "_last_obs": null,
83
  "_last_episode_starts": {
 
86
  },
87
  "_last_original_obs": {
88
  ":type:": "<class 'numpy.ndarray'>",
89
+ ":serialized:": "gAWVRgwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbQCwAAAAAAADizaI4b13Q/9G/82KQjdT+c/9pht1/2P9hzqA2+/+8/Yypi628Wb7+PFus/6yh1P2mI75EZIHM/IPtMp+EgXj9sGPaJjg56v+Y8yfGRF3w/2LKs7N7LcD+OI89C/yF+P76gc4Hpu3+/ob+dwZO2eL9A0y7weyFIP2y/VahVn2K/KMKYGIRPZz8p66BbCKWAv4D9LJeFHRk/fDjtrJ7Ua7+aEn4xUu5jv2aCJXkMSHq/swl2uyDjgb/QLMqe3dtzPzFeJjzQrXG/Hwicc1Vqf7/8UGFVAY1jP+JD6lqnLWm/DloA1YPKgb/0nCeLY3tpPwni5BadtYO/MHqqraJ5YL9oQgiNe3Bcv9VNZfh/D4I/Hn4h/aqmcz8YZV66ck1hv2xiliDh4oG/0qlCLIe5dL9qjmhElO2Cv7ZEx3abG4C/sHJXEcWoX78DwqZZhOp1v94JzsEFAXA/aAcyOUZGgr9WTCNbjJt5P4L8PYZMA3I/TR01aq/Wc78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANj2JkKD2wFAdxOvyUvIAUCH8q+1QRaiPz4VU4D2UzM/sHWdYwOcrj/ab1aFeo+Av5KkFQROgMC/HrNeulp3jT/z/Q4JY50QQMOO3ofnpCBAPUjXEhp8tj9UfVaoQOS1P2hWsE3ixIE/MK1rWGLo4D4zUKeaY1OFP9GLbqtnizI/QX6EPKnPqr+a5Y0ndwpVvx2XdPqh6Nk//T2EXThJAEAhy3nd4bOmP7z31wXv0aU/BErCEzyMqT/kia12FPosv1TlQArXgoI/Ycw7pprpMj+bXHy3DCDRv4bv+uq+7YC/mdIZRllOyT8cGW4GQWkXQIRlzOvWfs8/QkeB+1V9yj/+4sNkaY6qP7DMQ4O0A4S/q2YJ47C/kb/rMJ4yUwWzv9M776LHHbq/WJ1eB9Sv27+jzRxMiX7pv3vwbGsrGhJAVBqeOXfm6z8tjU/Ut0LrP7EQ3afJsJk/QchZua91cr+m6Ib1lcOcv1SJzNKsy8C/oG8756Pbqb9Ys6BhyxDOvzJ9is6ai/e/b7tbPFkPBUB0nU6W2JLwP5h/fkZ7XPA/qGw2OJ3Xkj+faq5u8CJnv/PDYzPRy5i/aehEUHllvr/CHNrLrlWgv0Im6AYeBsS/CEhC+NV19b+7ssy+Okb8Px9m+SjKTc8/wuNBFfKhyj++TSpoUxeqPyV9Hg+56YY/SdmXmT98lb9n4GGR3KayP7UZZFZanL6/Bjo1lfAX2z+BlCOtV4Tpv3vwbGsrGhJAJpinPRzm6z/rGQ5HOk/rP5sA0ICdHZo/g8+KlTHleT+7hkOieamkvwLc0dcDk8A/KjYLQwtlsr8CI00PCKbNP1XtrfWPjfe/b7tbPFkPBUCl3G2Xw5PwP3Nk2G8RYvA/IycGqHl5kz9+OqWQqDVyP2bhaXUMtaO/1tGtEZYdvj8rpKZGXPWpv6jqBfGM1cM/8HCDJSV39b+7ssy+Okb8P8yxqN+tn9o/zGFN9oPQ1D+GHQM/14O9PxrfwQdE+p8/PA91b11Upr/OnsIs4bXFPx7s5D+i3bs/ClyiV45Q2b+qAvzAeGzmP2z8deREgfk/zgLDabco1D9stgY4DdPVP3rkJeCvqMU/6rPhkykusz+Z9q90HZ/Dv3xQjyPiZ78/0WsX0X9i1T9Tq7fJfSbSv7sbOXPgIeE/w96z2Gks8z/tIQctJW/aP6MqnUUKctQ/dfuzfLndvT+LNEeO492ev1SnFVXq6qS/GpY6qpfExb+/WiRpvIO6P1Wm+cyzmNk/cRJnChI85j9s/HXkRIH5P+7NUdloMtQ/t2NKdnaJ1T+vkWY3H4vFP3Zp8jtrOrO/Aq+DUTFDw7/36emcGtK/vyUqDZTyC9U/HBpRk6N00j9yyGfnwRHhP8Pes9hpLPM/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/FS45AU/aL/jcWC8tsyBvyGlaA0QR2o/sNhPaTNFNb8X4SIyX2aCv+db5QROi2Q/qQn7yMuOaL9+AqkrYBGGv0/VAXBTN3q/eoBSrLC2LT/aD8uUO+2Cv/4W9eK8+2Q//tURn2Njc78YaJ1QnBuGv4ZBGeyRPnq/STEe/qEOLj/bTt4+I2eDv23yXY62+GQ/UbY121rQcD/bKHm6g0OKv5Vms0bL6lm/LZJVPOXIMb8emcrAdUWDvySM4rubtGw/PrWQGOAlcD9eNZsD6cJwv6LLS5w/blm/ARAqbfSUaT+8Fuy0/CODv6I/NuIPJWs/PrWQGOAlcD9eNZsD6cJwv6LLS5w/blm/ARAqbfSUaT+8Fuy0/CODv6I/NuIPJWs/0A06uN/nOT8kricdMwmTv0IjFZaaemc/yMjOGwP5UT8IrUUAF/aCv4uusdR3hmI/O7IEe8MxOD802uDEsg6Rv64HDt/cdGc/VK8cDgdKXj8ntb2EzPCCv4dHr4mBIWI/O7IEe8MxOD802uDEsg6Rv64HDt/cdGc/VK8cDgdKXj8ntb2EzPCCv4dHr4mBIWI/Zmmg9erMfb/AEsVcYQGMv5V+GibUsG8/Gp7HuuCoYT9ExwazGvuGv9kT/vsVH14/7J4i8JhPfr/MyUgWLV1+v3v1gMD9YGS/wmwp8MtlYj8ZqVBMZuKEv2ZiXACqTmc/n64lwuMhYj/ogrCwdXCAv53rOQxVA4I/eO9iukMmMz/xvWJ4SoF5v0dbzqDDXFo/mfuLKF9NYj9BkikZz6tyv4Ota2ae74g/PlXnhRqzND8mujH0LsB7v7F080rhyWE/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAU16AYaUjAFDlHSUUpQu"
90
  },
91
  "_episode_num": 0,
92
  "use_sde": false,
 
94
  "_current_progress_remaining": -3.8399999999993994e-05,
95
  "ep_info_buffer": {
96
  ":type:": "<class 'collections.deque'>",
97
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpDUGnXBCpECUhpRSlIwBbJRN6AOMAXSUR0Dnb2pAgPmQdX2UKGgGaAloD0MIWMUbmTdHpECUhpRSlGgVTegDaBZHQOdvrHpljEx1fZQoaAZoCWgPQwh07QvopdOkQJSGlFKUaBVN6ANoFkdA53AyvmPo3nV9lChoBmgJaA9DCMTSwI/qZqRAlIaUUpRoFU3oA2gWR0DncHagam4zdX2UKGgGaAloD0MI5IV0eNjTpUCUhpRSlGgVTegDaBZHQOdxAl5yEL91fZQoaAZoCWgPQwjFyf0O9aqjQJSGlFKUaBVN6ANoFkdA53FHhjWkJ3V9lChoBmgJaA9DCPESnPqwzKVAlIaUUpRoFU3oA2gWR0Dncc9SZSeidX2UKGgGaAloD0MIb4JvmrbJpUCUhpRSlGgVTegDaBZHQOdyEiNjsld1fZQoaAZoCWgPQwjrrBbYo6NxQJSGlFKUaBVN6ANoFkdA53KsdTgl4XV9lChoBmgJaA9DCOenOA7EvaFAlIaUUpRoFU3oA2gWR0Dncu8VdHDrdX2UKGgGaAloD0MId0tywKaDokCUhpRSlGgVTegDaBZHQOdzfB/qgRN1fZQoaAZoCWgPQwirWz0nPTqlQJSGlFKUaBVN6ANoFkdA53PARvm5lXV9lChoBmgJaA9DCKG/0CP+9aNAlIaUUpRoFU3oA2gWR0DndEyJm/WUdX2UKGgGaAloD0MIvM0bJ22eo0CUhpRSlGgVTegDaBZHQOd0j2QhfSh1fZQoaAZoCWgPQwgeUaG6gWalQJSGlFKUaBVN6ANoFkdA53UaX2mHg3V9lChoBmgJaA9DCFJIMqsvvqRAlIaUUpRoFU3oA2gWR0DndWWQPqcFdX2UKGgGaAloD0MIbXL4pIOwpUCUhpRSlGgVTegDaBZHQOd17LQb+991fZQoaAZoCWgPQwhqEyf3M82lQJSGlFKUaBVN6ANoFkdA53Yw8SGrS3V9lChoBmgJaA9DCDtWKT3j16RAlIaUUpRoFU3oA2gWR0Dndr2unuRcdX2UKGgGaAloD0MIZVHYRZkNpUCUhpRSlGgVTegDaBZHQOd3AvNZ/1B1fZQoaAZoCWgPQwjC3y9mm+ekQJSGlFKUaBVN6ANoFkdA53eKL1dxAHV9lChoBmgJaA9DCL2MYrnlaqRAlIaUUpRoFU3oA2gWR0Dnd8xHG0eEdX2UKGgGaAloD0MIC7d8JC04oUCUhpRSlGgVTegDaBZHQOd4Ve1hLGt1fZQoaAZoCWgPQwjQRxlxsZSkQJSGlFKUaBVN6ANoFkdA53iaOI68x3V9lChoBmgJaA9DCPFiYYiEFKVAlIaUUpRoFU3oA2gWR0DneSu3Lmp3dX2UKGgGaAloD0MIyhe0kJBIpUCUhpRSlGgVTegDaBZHQOd6mJU5uIh1fZQoaAZoCWgPQwiXVkPi7r+kQJSGlFKUaBVN6ANoFkdA53siYZ/CqXV9lChoBmgJaA9DCKOutfeZfKVAlIaUUpRoFU3oA2gWR0Dne2PaA4GVdX2UKGgGaAloD0MIuWx0zv+fpECUhpRSlGgVTegDaBZHQOd78GZ7Xxx1fZQoaAZoCWgPQwjWpxyTxSeZQJSGlFKUaBVN6ANoFkdA53w5oiC8OHV9lChoBmgJaA9DCLgdGhYjQqVAlIaUUpRoFU3oA2gWR0DnfML3RG+cdX2UKGgGaAloD0MI2qz6XOXSo0CUhpRSlGgVTegDaBZHQOd9Bp8D0UZ1fZQoaAZoCWgPQwhz2H3H4CikQJSGlFKUaBVN6ANoFkdA532MfaYeDHV9lChoBmgJaA9DCMpS6/1OKaRAlIaUUpRoFU3oA2gWR0Dnfc87QswtdX2UKGgGaAloD0MIfJxpwsYfpECUhpRSlGgVTegDaBZHQOd+UrZWaMJ1fZQoaAZoCWgPQwi29j5VPdKkQJSGlFKUaBVN6ANoFkdA536V+i8Fp3V9lChoBmgJaA9DCLmMmxqww6VAlIaUUpRoFU3oA2gWR0Dnfx8DGtITdX2UKGgGaAloD0MIWKmgokJXpUCUhpRSlGgVTegDaBZHQOd/YqIBRyh1fZQoaAZoCWgPQwijI7n8h16kQJSGlFKUaBVN6ANoFkdA53/u6wljVnV9lChoBmgJaA9DCEFn0qZSi6NAlIaUUpRoFU3oA2gWR0DngC/7IDHPdX2UKGgGaAloD0MIK1CLwUs0oECUhpRSlGgVTegDaBZHQOeAuGfqX4V1fZQoaAZoCWgPQwiz6nO1JbKkQJSGlFKUaBVN6ANoFkdA54D5w2VE/nV9lChoBmgJaA9DCEme6/swgaJAlIaUUpRoFU3oA2gWR0DngTxf0mMPdX2UKGgGaAloD0MIUFQ2rBlIo0CUhpRSlGgVTegDaBZHQOeBw53qzJJ1fZQoaAZoCWgPQwgOh6WBj1akQJSGlFKUaBVN6ANoFkdA54IGzTF2m3V9lChoBmgJaA9DCKjknNi7LqVAlIaUUpRoFU3oA2gWR0DngpBrHEMtdX2UKGgGaAloD0MIhL2JIXEwokCUhpRSlGgVTegDaBZHQOeC0yz1K5F1fZQoaAZoCWgPQwi0BYTWEx2lQJSGlFKUaBVN6ANoFkdA54NXwOWjXXV9lChoBmgJaA9DCDNTWn/7AKVAlIaUUpRoFU3oA2gWR0Dng5vJ5E+gdX2UKGgGaAloD0MIUMdjBqJipUCUhpRSlGgVTegDaBZHQOeEHiaAnUl1fZQoaAZoCWgPQwiNRdPZ2Y+kQJSGlFKUaBVN6ANoFkdA54WANq59VnV9lChoBmgJaA9DCLzOhvxbj6VAlIaUUpRoFU3oA2gWR0DnhgOUVzp5dX2UKGgGaAloD0MIpikCnBbmo0CUhpRSlGgVTegDaBZHQOeGRtVHWjJ1fZQoaAZoCWgPQwgwEW+dB4ylQJSGlFKUaBVN6ANoFkdA54bLegctG3V9lChoBmgJaA9DCOv+sRD9OaRAlIaUUpRoFU3oA2gWR0Dnhw2QbMoudX2UKGgGaAloD0MIVtP1RKfcokCUhpRSlGgVTegDaBZHQOeHl2iWVu91fZQoaAZoCWgPQwiQh767BaakQJSGlFKUaBVN6ANoFkdA54fZsewLVnV9lChoBmgJaA9DCBXj/E2QY6NAlIaUUpRoFU3oA2gWR0DniGKUJOWTdX2UKGgGaAloD0MIV5QSgjW0oUCUhpRSlGgVTegDaBZHQOeIom1rqMZ1fZQoaAZoCWgPQwi4kEdwCxGlQJSGlFKUaBVN6ANoFkdA54kpgyEcsHV9lChoBmgJaA9DCA6D+Suk7nlAlIaUUpRoFU3oA2gWR0DniYBJbt7bdX2UKGgGaAloD0MIptb7jY5wpUCUhpRSlGgVTegDaBZHQOeKB1lyzX11fZQoaAZoCWgPQwiPG343nUKkQJSGlFKUaBVN6ANoFkdA54pLHgpBonV9lChoBmgJaA9DCPrvwWt3mqFAlIaUUpRoFU3oA2gWR0DniuFhMJyAdX2UKGgGaAloD0MIejiB6XzNpECUhpRSlGgVTegDaBZHQOeLKmWMS9N1fZQoaAZoCWgPQwhjsyPV12KlQJSGlFKUaBVN6ANoFkdA54u17lJYknV9lChoBmgJaA9DCChHAaJwDaVAlIaUUpRoFU3oA2gWR0Dni/hwazeGdX2UKGgGaAloD0MItCCU9xmOpkCUhpRSlGgVTegDaBZHQOeMgNmYjSp1fZQoaAZoCWgPQwh9WkV/4M6jQJSGlFKUaBVN6ANoFkdA54zCuVopQXV9lChoBmgJaA9DCNC3BUu1eqJAlIaUUpRoFU3oA2gWR0DnjVqthd+odX2UKGgGaAloD0MItwvNdSIwpUCUhpRSlGgVTegDaBZHQOeNnZwbVBl1fZQoaAZoCWgPQwiCGylbJKalQJSGlFKUaBVN6ANoFkdA544lPg3tKXV9lChoBmgJaA9DCLe3W5KDtnRAlIaUUpRoFU3oA2gWR0Dnjnon+hoNdX2UKGgGaAloD0MIQKN06dcJpECUhpRSlGgVTegDaBZHQOePANqgyuZ1fZQoaAZoCWgPQwjGwaVjtrekQJSGlFKUaBVN6ANoFkdA549Ds+u/13V9lChoBmgJaA9DCIgP7PhP5oBAlIaUUpRoFU3oA2gWR0DnkPjlU6xPdX2UKGgGaAloD0MIbTttjbiEpECUhpRSlGgVTegDaBZHQOeRO+CPIXF1fZQoaAZoCWgPQwgC1T+ILPmlQJSGlFKUaBVN6ANoFkdA55HC2FN+LHV9lChoBmgJaA9DCK3aNSFlM6RAlIaUUpRoFU3oA2gWR0DnkgSFJQLvdX2UKGgGaAloD0MIKH0h5Bzan0CUhpRSlGgVTegDaBZHQOeSjzgKnel1fZQoaAZoCWgPQwg8hVypN2ihQJSGlFKUaBVN6ANoFkdA55LS/qHGj3V9lChoBmgJaA9DCFTGv8+IeqNAlIaUUpRoFU3oA2gWR0Dnk1sm9g4PdX2UKGgGaAloD0MI/rrTnW8YpECUhpRSlGgVTegDaBZHQOeToBwsGxF1fZQoaAZoCWgPQwjVWS2w70ulQJSGlFKUaBVN6ANoFkdA55PiUl7dBXV9lChoBmgJaA9DCIL/rWR/UKZAlIaUUpRoFU3oA2gWR0DnlGbjgAIZdX2UKGgGaAloD0MI1jbF4+K5cUCUhpRSlGgVTegDaBZHQOeUu6iAUcp1fZQoaAZoCWgPQwj4+e/B++GkQJSGlFKUaBVN6ANoFkdA55U/+SSvDHV9lChoBmgJaA9DCCYeUDZVKaVAlIaUUpRoFU3oA2gWR0DnlYNL127ndX2UKGgGaAloD0MIbR/yllvLm0CUhpRSlGgVTegDaBZHQOeWDZQpF1B1fZQoaAZoCWgPQwg0L4fdb0ekQJSGlFKUaBVN6ANoFkdA55ZQG3F1jnV9lChoBmgJaA9DCFuXGqFP2qNAlIaUUpRoFU3oA2gWR0Dnltj7yhBadX2UKGgGaAloD0MIWI6QgazVm0CUhpRSlGgVTegDaBZHQOeXHbvJA+p1fZQoaAZoCWgPQwj1LXO6TLCkQJSGlFKUaBVN6ANoFkdA55elK8UVSHV9lChoBmgJaA9DCF3F4jctZaVAlIaUUpRoFU3oA2gWR0Dnl+W5jH4odX2UKGgGaAloD0MIiLoPQKrVpUCUhpRSlGgVTegDaBZHQOeYbrOqvNh1fZQoaAZoCWgPQwjB/1ayQ4KkQJSGlFKUaBVN6ANoFkdA55ixeIdlunV9lChoBmgJaA9DCMzR4/depaRAlIaUUpRoFU3oA2gWR0DnmTp8MNMHdX2UKGgGaAloD0MIXeLIA5HspUCUhpRSlGgVTegDaBZHQOeZfYgHNX51fZQoaAZoCWgPQwh4RfC/NcKWQJSGlFKUaBVN6ANoFkdA55oGI11nunV9lChoBmgJaA9DCFVOe0oOYKRAlIaUUpRoFU3oA2gWR0Dnmkk9mpVCdWUu"
98
  },
99
  "ep_success_buffer": {
100
  ":type:": "<class 'collections.deque'>",
 
111
  "n_epochs": 20,
112
  "clip_range": {
113
  ":type:": "<class 'function'>",
114
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
115
  },
116
  "clip_range_vf": null,
117
  "normalize_advantage": true,
ppo-seals-Humanoid-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3d96929b6077bc98b3bc8050f85485bb1bd4d07ceadf17d570e734fb43c45d71
3
- size 2652144
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13f2895ca27820a114ef88d97804ff78cb19695f8f8ba161cd9275ff27332f96
3
+ size 2652208
ppo-seals-Humanoid-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:78bb7672b7240555dda9c3d4f2a4bd90d3a5f11fa83368ec40978f51d7c46ade
3
- size 1325374
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d773dfed02e72f8b59472a95a3d7071678e322a3b599a141914a4e8a76a47051
3
+ size 1329333
ppo-seals-Humanoid-v0/system_info.txt CHANGED
@@ -1,6 +1,6 @@
1
- OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.29 #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022
2
  Python: 3.8.10
3
- Stable-Baselines3: 1.6.0
4
  PyTorch: 1.11.0+cu102
5
  GPU Enabled: False
6
  Numpy: 1.22.3
 
1
+ OS: Linux-5.4.0-125-generic-x86_64-with-glibc2.29 #141-Ubuntu SMP Wed Aug 10 13:42:03 UTC 2022
2
  Python: 3.8.10
3
+ Stable-Baselines3: 1.6.2
4
  PyTorch: 1.11.0+cu102
5
  GPU Enabled: False
6
  Numpy: 1.22.3
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c00889beceae0de265b5474637fe0b3077b7145d9b7c14e5a2bbacbe1fb2b8a1
3
- size 1709818
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b072c59a62891f0ea277136d303d4e7b4f90002db3217c17179cc493938d4c7d
3
+ size 1904784
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 543.0997914, "std_reward": 331.5643843684229, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-27T16:55:10.904425"}
 
1
+ {"mean_reward": 2242.5097121999997, "std_reward": 858.2038158853227, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-02T10:55:01.214765"}
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cd4b817f3a165101700ee701fc5bdea3cfe28247a2d876d5a9b33fe3716a789d
3
- size 340117
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f344df233dd2942398271be5fb358e49a601ffaca899d5e02b62f09ec0863eac
3
+ size 340699
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f1a9efda2e7505870b4bfe16684559efbe0fb7b32f03c1d97928d1b11c99b3b5
3
- size 20029
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aae0810e8d965c2ae992353c43e7d8f0ccee57070a220890cb4779a271a28ff
3
+ size 13864