import numpy as np from tensorflow.keras.models import load_model from data_loader import load_images_from_folder, create_sequences def predict_next_frame(model_path, input_sequence): model = load_model(model_path) predictions = model.predict(input_sequence) return predictions if __name__ == "__main__": folder_path = "/path/to/new/data" img_size = (200, 200) sequence_length = 5 # Load and preprocess data dataset = load_images_from_folder(folder_path, img_size=img_size) dataset = np.expand_dims(dataset, axis=-1) sequences = create_sequences(dataset, sequence_length) # Load trained model and predict model_path = "best_model.keras" predictions = predict_next_frame(model_path, sequences) print("Predictions generated for the input sequence.")