--- license: other tags: - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-toolwear results: [] --- # segformer-b0-finetuned-segments-toolwear This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1501 - Mean Iou: 0.4560 - Mean Accuracy: 0.9040 - Overall Accuracy: 0.9643 - Accuracy Unlabeled: nan - Accuracy Wear: 0.8404 - Accuracy Tool: 0.9675 - Iou Unlabeled: 0.0 - Iou Wear: 0.4034 - Iou Tool: 0.9646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Wear | Accuracy Tool | Iou Unlabeled | Iou Wear | Iou Tool | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:| | 0.4464 | 1.82 | 20 | 0.6527 | 0.3325 | 0.5116 | 0.9740 | nan | 0.0242 | 0.9990 | 0.0 | 0.0235 | 0.9740 | | 0.3069 | 3.64 | 40 | 0.3300 | 0.4958 | 0.8505 | 0.9661 | nan | 0.7288 | 0.9723 | 0.0 | 0.5213 | 0.9662 | | 0.276 | 5.45 | 60 | 0.2597 | 0.4089 | 0.9324 | 0.9368 | nan | 0.9278 | 0.9370 | 0.0 | 0.2909 | 0.9358 | | 0.2648 | 7.27 | 80 | 0.2321 | 0.4338 | 0.8839 | 0.9567 | nan | 0.8071 | 0.9607 | 0.0 | 0.3441 | 0.9572 | | 0.245 | 9.09 | 100 | 0.2298 | 0.4021 | 0.9265 | 0.9359 | nan | 0.9167 | 0.9364 | 0.0 | 0.2715 | 0.9348 | | 0.2047 | 10.91 | 120 | 0.1897 | 0.4379 | 0.8814 | 0.9446 | nan | 0.8147 | 0.9480 | 0.0 | 0.3684 | 0.9455 | | 0.1695 | 12.73 | 140 | 0.1681 | 0.4561 | 0.8444 | 0.9636 | nan | 0.7188 | 0.9701 | 0.0 | 0.4026 | 0.9657 | | 0.1556 | 14.55 | 160 | 0.1741 | 0.4289 | 0.9060 | 0.9494 | nan | 0.8603 | 0.9517 | 0.0 | 0.3372 | 0.9497 | | 0.1435 | 16.36 | 180 | 0.1528 | 0.4746 | 0.8851 | 0.9679 | nan | 0.7978 | 0.9723 | 0.0 | 0.4549 | 0.9689 | | 0.1208 | 18.18 | 200 | 0.1648 | 0.4379 | 0.9126 | 0.9577 | nan | 0.8650 | 0.9601 | 0.0 | 0.3560 | 0.9577 | | 0.1425 | 20.0 | 220 | 0.1587 | 0.4451 | 0.9116 | 0.9576 | nan | 0.8631 | 0.9601 | 0.0 | 0.3774 | 0.9578 | | 0.1124 | 21.82 | 240 | 0.1515 | 0.4291 | 0.9044 | 0.9491 | nan | 0.8574 | 0.9515 | 0.0 | 0.3380 | 0.9493 | | 0.1509 | 23.64 | 260 | 0.1501 | 0.4560 | 0.9040 | 0.9643 | nan | 0.8404 | 0.9675 | 0.0 | 0.4034 | 0.9646 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3