import requests from sklearn.neural_network import MLPClassifier from sklearn.model_selection import train_test_split import numpy as np import pandas as pd from telegram import InlineKeyboardButton, InlineKeyboardMarkup from telegram.ext import Updater, CommandHandler, CallbackQueryHandler import logging from selenium import webdriver import os # Set up logging logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) logger = logging.getLogger(__name__) # API Keys (retrieve from environment variables or securely store them) BINANCE_API_KEY = os.getenv('https://api.binance.com/api/v3/ticker/price?symbol={symbol}') ALPHA_VANTAGE_API_KEY = os.getenv('https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=IBM&apikey=demo') IEX_CLOUD_API_KEY = os.getenv('https://cloud.iexapis.com/stable/stock/{symbol}/quote?token={IEX_CLOUD_API_KEY}') FOREX_COM_API_KEY = os.getenv('https://api.forex.com/v1/quotes/{pair}?api_key={FOREX_COM_API_KEY}') # Placeholder Binomo credentials and URLs (these should be securely managed and properly implemented) BINOMO_USERNAME = os.getenv('BINOMO_USERNAME') BINOMO_PASSWORD = os.getenv('BINOMO_PASSWORD') BINOMO_URL = 'https://binomo.com/' # Data fetching functions def get_crypto_price_binance(symbol): url = f'https://api.binance.com/api/v3/ticker/price?symbol={symbol}' headers = {'X-MBX-APIKEY': BINANCE_API_KEY} response = requests.get(url, headers=headers) data = response.json() return float(data['price']) def get_stock_price_yahoo(symbol): url = f'https://query1.finance.yahoo.com/v7/finance/quote?symbols={symbol}' response = requests.get(url) data = response.json() return float(data['quoteResponse']['result'][0]['regularMarketPrice']) def get_crypto_price_alpha_vantage(symbol): url = f'https://www.alphavantage.co/query?function=CURRENCY_EXCHANGE_RATE&from_currency={symbol[:3]}&to_currency={symbol[3:]}&apikey={ALPHA_VANTAGE_API_KEY}' response = requests.get(url) data = response.json() return float(data['Realtime Currency Exchange Rate']['5. Exchange Rate']) def get_stock_price_iex(symbol): url = f'https://cloud.iexapis.com/stable/stock/{symbol}/quote?token={IEX_CLOUD_API_KEY}' response = requests.get(url) data = response.json() return float(data['latestPrice']) def get_forex_price_forex_com(pair): url = f'https://api.forex.com/v1/quotes/{pair}?api_key={FOREX_COM_API_KEY}' response = requests.get(url) data = response.json() return float(data['price']) # Fetch historical data function def fetch_historical_data_yahoo(symbol, start_date, end_date): url = f'https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?period1={start_date}&period2={end_date}&interval=1d' response = requests.get(url) data = response.json() timestamps = data['chart']['result'][0]['timestamp'] close_prices = data['chart']['result'][0]['indicators']['quote'][0]['close'] return pd.DataFrame({'timestamp': timestamps, 'close': close_prices}) # Fetch and preprocess historical data def prepare_data(): # Example symbols and dates crypto_symbol = 'BTC-USD' stock_symbol = 'AAPL' start_date = '1714521600' # Unix timestamp for May 1, 2024 end_date = '1715990400' # Unix timestamp for May 17, 2024 crypto_data = fetch_historical_data_yahoo(crypto_symbol, start_date, end_date) stock_data = fetch_historical_data_yahoo(stock_symbol, start_date, end_date) # Merge data on timestamp merged_data = pd.merge(crypto_data, stock_data, on='timestamp', suffixes=('_crypto', '_stock')) X = merged_data[['close_crypto', 'close_stock']].values y = (merged_data['close_crypto'].shift(-1) > merged_data['close_crypto']).astype(int).values[:-1] # Example target X = X[:-1] # Align X with y return X, y # Fetch and preprocess data X, y = prepare_data() # Split data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize and train the neural network model = MLPClassifier(hidden_layer_sizes=(10,), max_iter=1000) model.fit(X_train, y_train) # Function to predict trade action def predict_trade_action(data): return model.predict(data) # Start command handler def start(update, context): keyboard = [ [InlineKeyboardButton("Real Account", callback_data='real_account')], [InlineKeyboardButton("Demo Account", callback_data='demo_account')], [InlineKeyboardButton("Check Balance", callback_data='check_balance')], [InlineKeyboardButton("Trade Options", callback_data='trade_options')] ] reply_markup = InlineKeyboardMarkup(keyboard) update.message.reply_text('Choose an option:', reply_markup=reply_markup) def button(update, context): query = update.callback_query query.answer() if query.data == 'real_account': context.user_data['account'] = 'real' query.edit_message_text(text="Switched to Real Account") elif query.data == 'demo_account': context.user_data['account'] = 'demo' query.edit_message_text(text="Switched to Demo Account") elif query.data == 'check_balance': balance = check_binomo_balance(context.user_data.get('account', 'demo')) query.edit_message_text(text=f"Current Balance: {balance}") elif query.data == 'trade_options': keyboard = [ [InlineKeyboardButton("Buy", callback_data='buy')], [InlineKeyboardButton("Sell", callback_data='sell')], [InlineKeyboardButton("Change Currency Pair", callback_data='change_currency_pair')] ] reply_markup = InlineKeyboardMarkup(keyboard) query.edit_message_text(text='Choose a trade option:', reply_markup=reply_markup) elif query.data in ['buy', 'sell']: place_trade_on_binomo(query.data) query.edit_message_text(text=f"Placed a {query.data} order.") elif query.data == 'change_currency_pair': query.edit_message_text(text='Please enter the currency pair (e.g., BTCUSDT):') # Check Binomo balance (mock function) def check_binomo_balance(account_type): # Mock balance for demonstration if account_type == 'real': return 1000.0 # Replace with actual API call to Binomo else: return 50000.0 # Replace with actual API call to Binomo # Placeholder for placing a trade on Binomo def place_trade_on_binomo(action): driver = webdriver.Chrome() # Ensure you have ChromeDriver set up driver.get(BINOMO_URL) # Log in to Binomo driver.find_element_by_id('username').send_keys(BINOMO_USERNAME) driver.find_element_by_id('password').send_keys(BINOMO_PASSWORD) driver.find_element_by_id('login-button').click() # Add your own logic here to log in and navigate to the trading interface if action == 'buy': # Code to place a buy order pass else: # Code to place a sell order pass driver.quit() # Main function to set up the bot def main(): # Set up the updater and dispatcher updater = Updater("YOUR_TELEGRAM_BOT_TOKEN", use_context=True) dp = updater.dispatcher # Add command handlers dp.add_handler(CommandHandler("start", start)) dp.add_handler(CallbackQueryHandler(button)) # Start the bot updater.start_polling() updater.idle() if __name__ == '__main__': main()