--- license: gemma library_name: peft tags: - trl - reward-trainer - generated_from_trainer metrics: - accuracy base_model: google/gemma-2b model-index: - name: RM-HH-Gemma_harmless_gpt3_20000_gemma2b_shuffleFalse_extractchosenTrue results: [] --- # RM-HH-Gemma_harmless_gpt3_20000_gemma2b_shuffleFalse_extractchosenTrue This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0495 - Accuracy: 0.9820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.41e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9068 | 0.03 | 250 | 0.5546 | 0.7177 | | 0.5566 | 0.06 | 500 | 0.2048 | 0.9170 | | 0.5143 | 0.08 | 750 | 0.1646 | 0.9370 | | 0.4865 | 0.11 | 1000 | 0.1396 | 0.9457 | | 0.4771 | 0.14 | 1250 | 0.1204 | 0.9510 | | 0.4452 | 0.17 | 1500 | 0.1118 | 0.9565 | | 0.436 | 0.19 | 1750 | 0.1063 | 0.9570 | | 0.4433 | 0.22 | 2000 | 0.0942 | 0.9615 | | 0.4541 | 0.25 | 2250 | 0.0878 | 0.9647 | | 0.4361 | 0.28 | 2500 | 0.0822 | 0.9672 | | 0.4626 | 0.31 | 2750 | 0.0766 | 0.9700 | | 0.4595 | 0.33 | 3000 | 0.0714 | 0.9720 | | 0.4375 | 0.36 | 3250 | 0.0720 | 0.9715 | | 0.4338 | 0.39 | 3500 | 0.0693 | 0.9727 | | 0.4082 | 0.42 | 3750 | 0.0675 | 0.9720 | | 0.4306 | 0.44 | 4000 | 0.0635 | 0.9745 | | 0.4296 | 0.47 | 4250 | 0.0629 | 0.9750 | | 0.4318 | 0.5 | 4500 | 0.0590 | 0.9767 | | 0.4226 | 0.53 | 4750 | 0.0575 | 0.9775 | | 0.435 | 0.56 | 5000 | 0.0556 | 0.9785 | | 0.4501 | 0.58 | 5250 | 0.0557 | 0.9790 | | 0.3923 | 0.61 | 5500 | 0.0542 | 0.9785 | | 0.4222 | 0.64 | 5750 | 0.0541 | 0.9790 | | 0.3891 | 0.67 | 6000 | 0.0538 | 0.9787 | | 0.4123 | 0.69 | 6250 | 0.0551 | 0.9790 | | 0.3805 | 0.72 | 6500 | 0.0521 | 0.9805 | | 0.4269 | 0.75 | 6750 | 0.0529 | 0.9800 | | 0.382 | 0.78 | 7000 | 0.0530 | 0.9802 | | 0.422 | 0.81 | 7250 | 0.0517 | 0.9812 | | 0.4621 | 0.83 | 7500 | 0.0506 | 0.9812 | | 0.3963 | 0.86 | 7750 | 0.0498 | 0.9820 | | 0.4097 | 0.89 | 8000 | 0.0495 | 0.9820 | | 0.4705 | 0.92 | 8250 | 0.0492 | 0.9822 | | 0.4248 | 0.94 | 8500 | 0.0493 | 0.9820 | | 0.3938 | 0.97 | 8750 | 0.0495 | 0.9820 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2