--- base_model: bert-base-cased datasets: - glue license: apache-2.0 metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: finetuned-bert-mrpc results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue args: mrpc metrics: - type: f1 value: 0.8998 name: F1 --- # finetuned-bert-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4436 - Accuracy: 0.8554 - F1: 0.8998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5533 | 1.0 | 230 | 0.4256 | 0.8113 | 0.8702 | | 0.3274 | 2.0 | 460 | 0.3869 | 0.8407 | 0.8873 | | 0.1603 | 3.0 | 690 | 0.4436 | 0.8554 | 0.8998 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1