--- base_model: microsoft/Phi-3-medium-4k-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: phi-3-medium-MoRA results: [] --- [Visualize in Weights & Biases](https://wandb.ai/hmehdi-endosoft/Phi3-medium-ft-python-code/runs/rlpgnpbr) # phi-3-medium-MoRA This model is a fine-tuned version of [microsoft/Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:------:|:---------------:| | 1.0968 | 0.1118 | 2500 | 0.7399 | | 1.0638 | 0.2237 | 5000 | 0.7234 | | 1.0536 | 0.3355 | 7500 | 0.7156 | | 1.0581 | 0.4473 | 10000 | 0.7128 | | 1.0618 | 0.5592 | 12500 | 0.7125 | | 1.0533 | 0.6710 | 15000 | 0.7131 | | 1.0664 | 0.7828 | 17500 | 0.7133 | | 1.0719 | 0.8947 | 20000 | 0.7160 | | 1.0628 | 1.0065 | 22500 | 0.7210 | | 0.9341 | 1.1183 | 25000 | 0.7241 | | 0.9468 | 1.2301 | 27500 | 0.7235 | | 0.9553 | 1.3420 | 30000 | 0.7271 | | 0.9557 | 1.4538 | 32500 | 0.7242 | | 0.9669 | 1.5656 | 35000 | 0.7244 | | 0.9627 | 1.6775 | 37500 | 0.7220 | | 0.963 | 1.7893 | 40000 | 0.7215 | | 0.9493 | 1.9011 | 42500 | 0.7207 | | 0.8938 | 2.0130 | 45000 | 0.7668 | | 0.7061 | 2.1248 | 47500 | 0.7739 | | 0.7105 | 2.2366 | 50000 | 0.7693 | | 0.7046 | 2.3485 | 52500 | 0.7716 | | 0.7241 | 2.4603 | 55000 | 0.7713 | | 0.7273 | 2.5721 | 57500 | 0.7669 | | 0.7443 | 2.6840 | 60000 | 0.7685 | | 0.7457 | 2.7958 | 62500 | 0.7664 | | 0.7436 | 2.9076 | 65000 | 0.7659 | | 0.7525 | 3.0195 | 67500 | 0.8617 | | 0.465 | 3.1313 | 70000 | 0.8682 | | 0.4823 | 3.2431 | 72500 | 0.8798 | | 0.4865 | 3.3550 | 75000 | 0.8763 | | 0.4977 | 3.4668 | 77500 | 0.8613 | | 0.5088 | 3.5786 | 80000 | 0.8627 | | 0.5136 | 3.6904 | 82500 | 0.8681 | | 0.5128 | 3.8023 | 85000 | 0.8486 | | 0.525 | 3.9141 | 87500 | 0.8585 | | 0.3967 | 4.0259 | 90000 | 0.9826 | | 0.3016 | 4.1378 | 92500 | 0.9951 | | 0.3167 | 4.2496 | 95000 | 1.0293 | | 0.3179 | 4.3614 | 97500 | 0.9904 | | 0.3292 | 4.4733 | 100000 | 0.9947 | | 0.3346 | 4.5851 | 102500 | 0.9932 | | 0.3405 | 4.6969 | 105000 | 0.9715 | | 0.344 | 4.8088 | 107500 | 0.9974 | | 0.3497 | 4.9206 | 110000 | 0.9929 | | 0.3226 | 5.0324 | 112500 | 1.1483 | | 0.2071 | 5.1443 | 115000 | 1.1669 | | 0.2131 | 5.2561 | 117500 | 1.1275 | | 0.2204 | 5.3679 | 120000 | 1.1513 | | 0.222 | 5.4798 | 122500 | 1.1549 | | 0.2287 | 5.5916 | 125000 | 1.1552 | | 0.2315 | 5.7034 | 127500 | 1.1370 | | 0.2359 | 5.8153 | 130000 | 1.1318 | | 0.2362 | 5.9271 | 132500 | 1.1461 | | 0.1611 | 6.0389 | 135000 | 1.2983 | | 0.1527 | 6.1507 | 137500 | 1.3192 | | 0.1593 | 6.2626 | 140000 | 1.3295 | | 0.16 | 6.3744 | 142500 | 1.3048 | | 0.1647 | 6.4862 | 145000 | 1.3161 | | 0.1659 | 6.5981 | 147500 | 1.2908 | | 0.1666 | 6.7099 | 150000 | 1.3202 | | 0.1692 | 6.8217 | 152500 | 1.3039 | | 0.1711 | 6.9336 | 155000 | 1.2895 | | 0.1433 | 7.0454 | 157500 | 1.4769 | | 0.122 | 7.1572 | 160000 | 1.4877 | | 0.1225 | 7.2691 | 162500 | 1.4722 | | 0.1261 | 7.3809 | 165000 | 1.4794 | | 0.1262 | 7.4927 | 167500 | 1.4749 | | 0.1274 | 7.6046 | 170000 | 1.4719 | | 0.1287 | 7.7164 | 172500 | 1.4495 | | 0.1298 | 7.8282 | 175000 | 1.4753 | | 0.1304 | 7.9401 | 177500 | 1.4705 | | 0.1 | 8.0519 | 180000 | 1.6185 | | 0.1038 | 8.1637 | 182500 | 1.6353 | | 0.1053 | 8.2756 | 185000 | 1.6272 | | 0.1054 | 8.3874 | 187500 | 1.6138 | | 0.1057 | 8.4992 | 190000 | 1.6226 | | 0.1061 | 8.6110 | 192500 | 1.6407 | | 0.1068 | 8.7229 | 195000 | 1.6334 | | 0.1082 | 8.8347 | 197500 | 1.6358 | | 0.1063 | 8.9465 | 200000 | 1.6325 | | 0.0936 | 9.0584 | 202500 | 1.7572 | | 0.091 | 9.1702 | 205000 | 1.7476 | | 0.0932 | 9.2820 | 207500 | 1.7529 | | 0.0932 | 9.3939 | 210000 | 1.7541 | | 0.0935 | 9.5057 | 212500 | 1.7595 | | 0.0931 | 9.6175 | 215000 | 1.7609 | | 0.0937 | 9.7294 | 217500 | 1.7647 | | 0.0922 | 9.8412 | 220000 | 1.7643 | | 0.0925 | 9.9530 | 222500 | 1.7627 | ### Framework versions - PEFT 0.9.0 - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1