File size: 12,774 Bytes
7c5411b 134b59a 7c5411b 134b59a 7c5411b 134b59a 7c5411b 134b59a 7c5411b 134b59a 7c5411b 134b59a 7c5411b 134b59a 7c5411b 134b59a 7c5411b 134b59a 7c5411b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
---
library_name: transformers
tags:
- unsloth
license: apache-2.0
datasets:
- llm-jp/magpie-sft-v1.0
language:
- ja
base_model:
- google/gemma-2-9b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
gemma-2-9b-nyan100
gemma-2-9b-nyan100 は、Google の Gemma-2-9b を基に、日本語の指示追従タスクに特化して微調整されたモデルです。本モデルは、特に日本語での指示応答や対話生成、文書要約などのタスクに優れた性能を発揮します。
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [Hizaneko]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [指示追従型大規模言語モデル (Instruction-Following LLM)]
- **Language(s) (NLP):** [日本語]
- **License:** [Gemma 利用規約 に従う]
- **Finetuned from model [optional]:** [google/gemma-2-9b]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
!pip uninstall unsloth -y
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
# Google Colab のデフォルトで入っているパッケージをアップグレード(Moriyasu さんありがとうございます)
!pip install --upgrade torch
!pip install --upgrade xformers
# notebookでインタラクティブな表示を可能とする(ただし、うまく動かない場合あり)
# Google Colabでは実行不要
!pip install ipywidgets --upgrade
# Install Flash Attention 2 for softcapping support
import torch
if torch.cuda.get_device_capability()[0] >= 8:
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"
# Hugging Face Token を指定
#HF_TOKEN = "" #@param {type:"string"}
# あるいはGoogle Colab シークレットを使う場合、左のサイドバーより🔑マークをクリック
# HF_TOKEN という名前で Value に Hugging Face Token を入れてください。
# ノートブックからのアクセスのトグルをオンにし、下記の二行のコードのコメントアウトを外してください。
from google.colab import userdata
HF_TOKEN=userdata.get('HF_TOKEN')
# google/gemma-2-9bを4bit量子化のqLoRA設定でロード。
from unsloth import FastLanguageModel
import torch
#max_seq_length = 512 # unslothではRoPEをサポートしているのでコンテキスト長は自由に設定可能
max_seq_length = 1024
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は9Bモデルを扱うためTrue
# HFからモデルリポジトリをダウンロード
!huggingface-cli login --token $HF_TOKEN
!huggingface-cli download google/gemma-2-9b --local-dir gemma-2-9b/
model_id = "./gemma-2-9b"
new_model_id = "gemma-2-9b-nyan100" #Fine-Tuningしたモデルにつけたい名前
# FastLanguageModel インスタンスを作成
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=dtype,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
)
# SFT用のモデルを用意
model = FastLanguageModel.get_peft_model(
model,
r = 32,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 32,
lora_dropout = 0.05,
#lora_dropout = 0.1,
bias = "none",
use_gradient_checkpointing = "unsloth",
random_state = 3407,
use_rslora = False,
loftq_config = None,
max_seq_length = max_seq_length,
)
from datasets import load_dataset
# データセットのロード
dataset_name = "llm-jp/magpie-sft-v1.0"
dataset = load_dataset(dataset_name)
# データセットの10分の1を使用(train split前提)
train_length = len(dataset["train"])
#dataset["train"] = dataset["train"].select(range(train_length // 10))
dataset["train"] = dataset["train"].select(range(train_length // 100))
# フォーマット整形関数の定義
def format_dataset(examples):
conversations = examples["conversations"] # conversationsカラムを取得
user_inputs = []
assistant_outputs = []
for turn in conversations:
if turn["role"] == "user":
user_inputs.append(turn["content"])
elif turn["role"] == "assistant":
assistant_outputs.append(turn["content"])
input_text = " ".join(user_inputs) # ユーザー発話を結合
output_text = " ".join(assistant_outputs) # アシスタント発話を結合
return {
"text": input_text, # 入力部分
"output": output_text # 出力部分
}
# データセットを整形
formatted_dataset = dataset.map(
format_dataset,
num_proc=4,
remove_columns=["conversations"]
)
# 結果の表示
print(formatted_dataset)
# プロンプトフォーマットの定義
prompt = """### 指示
{}
### 回答
{}"""
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン
# プロンプト生成関数
def formatting_prompts_func(examples):
input_text = examples["text"]
output_text = examples["output"]
formatted_text = prompt.format(input_text, output_text) + EOS_TOKEN
return {"formatted_text": formatted_text}
# プロンプト適用
final_dataset = formatted_dataset.map(
formatting_prompts_func,
num_proc=4
)
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset=final_dataset["train"],
max_seq_length = max_seq_length,
dataset_text_field="formatted_text",
packing = False,
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
num_train_epochs = 1,
logging_steps = 10,
warmup_steps = 10,
save_steps=100,
save_total_limit=2,
max_steps=-1,
learning_rate = 2e-4,
#learning_rate = 1e-4,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
group_by_length=True,
seed = 3407,
output_dir = "outputs",
report_to = "none",
),
)
trainer_stats = trainer.train()
# ELYZA-tasks-100-TVの読み込み。事前にファイルをアップロードしてください
# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
import json
datasets = []
with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# 学習したモデルを用いてタスクを実行
from tqdm import tqdm
# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)
results = []
for dt in tqdm(datasets):
input = dt["input"]
#prompt = f"""### 指示\n{input}\n### 回答\n"""
prompt = f"""### 指示\n{input} 簡潔に回答してください \n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
# jsonlで保存
with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
#モデルとトークナイザーをHugging Faceにアップロード。
# 一旦privateでアップロードしてください。
# 最終成果物が決まったらpublicにするようお願いします。
# 現在公開しているModel_Inference_Template.ipynbはunslothを想定していないためそのままでは動かない可能性があります。
model.push_to_hub_merged(
new_model_id,
tokenizer=tokenizer,
save_method="lora",
token=HF_TOKEN,
private=True
)
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
データセット: llm-jp/magpie-sft-v1.0
データ量: 約50,000件の日本語サンプルのうちランダムに抽出した5000件
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
LoRA 設定:
r=32
lora_alpha=32
lora_dropout=0.05
バッチサイズ: デバイスごとに 2
勾配累積ステップ: 4
学習率: 2e-4
学習エポック数: 1
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [NVIDIA L4]
- **Hours used:** [約1時間]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |