File size: 1,748 Bytes
679a39f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: unsloth/llama-3-8b-bnb-4bit
library_name: peft
license: llama3
tags:
- trl
- sft
- unsloth
- generated_from_trainer
model-index:
- name: CFcontract_llama3.1-8B-unsloth
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CFcontract_llama3.1-8B-unsloth

This model is a fine-tuned version of [unsloth/llama-3-8b-bnb-4bit](https://huggingface.co/unsloth/llama-3-8b-bnb-4bit) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9835

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 6

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.9976 | 206  | 1.3437          |
| No log        | 2.0    | 413  | 1.3596          |
| 1.2049        | 2.9976 | 619  | 1.4431          |
| 1.2049        | 4.0    | 826  | 1.5887          |
| 0.5606        | 4.9976 | 1032 | 1.7751          |
| 0.5606        | 5.9855 | 1236 | 1.9835          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1