--- license: apache-2.0 base_model: bert-base-multilingual-cased datasets: - HiTZ/multilingual-abstrct language: - en - es - fr - it metrics: - f1 pipeline_tag: token-classification library_name: transformers widget: - text: The dysuria resolved faster in patients implanted with 103Pd but was unaffected by the use of supplemental radiotherapy and/or androgen deprivation therapy. - text: La disuria se resolvió más rápidamente en los pacientes implantados con 103Pd, pero no se vio afectada por el uso de radioterapia suplementaria y/o terapia de privación de andrógenos. - text: La dysurie s'est résorbée plus rapidement chez les patients implantés avec du 103Pd, mais n'a pas été affectée par l'utilisation d'une radiothérapie complémentaire et/ou d'une thérapie de privation d'androgènes. - text: La disuria si è risolta più rapidamente nei pazienti impiantati con 103Pd, ma non è stata influenzata dall'uso della radioterapia supplementare e/o della terapia di deprivazione androgenica. ---


# mBERT for multilingual Argument Detection in the Medical Domain This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) for the argument component detection task on AbstRCT data in English, Spanish, French and Italian ([https://huggingface.co/datasets/HiTZ/multilingual-abstrct](https://huggingface.co/datasets/HiTZ/multilingual-abstrct)). ## Performance F1-macro scores (at sequence level) and their averages per test set from the argument component detection results of monolingual, monolingual automatically post-processed, multilingual, multilingual automatically post-processed, and crosslingual experiments. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2 **Contact**: [Anar Yeginbergen](https://ixa.ehu.eus/node/13807?language=en) and [Rodrigo Agerri](https://ragerri.github.io/) HiTZ Center - Ixa, University of the Basque Country UPV/EHU