--- datasets: - HiTZ/AbstRCT-ES language: - es - en pipeline_tag: token-classification widget: - text: >- The dysuria resolved faster in patients implanted with 103Pd but was unaffected by the use of supplemental radiotherapy and/or androgen deprivation therapy. - text: >- La disuria se resolvió más rápidamente en los pacientes implantados con 103Pd, pero no se vio afectada por el uso de radioterapia suplementaria y/o terapia de privación de andrógenos. --- # Cross-lingual Argument Mining in the Medical Domain This model is a fine-tuned version of mBERT for the argument mining task using AbstRCT data in English and Spanish. The dataset consists of abstracts of 5 disease types for argument component detection and argument relation classification: - `neoplasm`: 350 train, 100 dev and 50 test abstracts - `glaucoma_test`: 100 abstracts - `mixed_test`: 100 abstracts (20 on glaucoma, 20 on neoplasm, 20 on diabetes, 20 on hypertension, 20 on hepatitis) The results (F1 macro averaged at token level) achieved for each test set: Test | F1-macro | F1-Claim | F1-Premise --|-------|-------|------- Neoplasm | 82.36 | 74.89 | 89.07 Glaucoma | 80.52 | 75.22 | 84.86 Mixed | 81.69 | 75.06 | 88.57 You can find more information: - 📖 Paper: [Crosslingual Argument Mining in the Medical Domain](https://arxiv.org/abs/2301.10527) - 💻Code: [https://github.com/ragerri/abstrct-projections](https://github.com/ragerri/abstrct-projections) You can load the model as follows: ```python from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained('HiTZ/mbert-argument-mining-es') ```` ## Citation ````bibtex @misc{yeginbergen2024crosslingual, title={Cross-lingual Argument Mining in the Medical Domain}, author={Anar Yeginbergen and Rodrigo Agerri}, year={2024}, eprint={2301.10527}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```` **Contact**: [Anar Yeginbergen](https://ixa.ehu.eus/node/13807?language=en) and [Rodrigo Agerri](https://ragerri.github.io/) HiTZ Center - Ixa, University of the Basque Country UPV/EHU