--- language: - ar metrics: - Accuracy - F1_score - BLEU library_name: transformers pipeline_tag: text2text-generation tags: - t5 - text2text-generation - seq2seq - Classification and Generation - Classification - Generation - ArabicT5 - Text Classification - Text2Text Generation widget: - example_title: "الرياضة" - text: > خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس --- # ArabicT5: Classification and Generation of Arabic News - The model is under trial # The number in the generated text represents the category of the news, as shown below: category_mapping = { 'Political':1, 'Economy':2, 'Health':3, 'Sport':4, 'Culture':5, 'Technology':6, 'Art':7, 'Accidents':8 } # Example usage ```python from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline model_name="Hezam/ArabicT5-news-classification-generation-45GB-base" model = T5ForConditionalGeneration.from_pretrained(model_name) tokenizer = T5Tokenizer.from_pretrained(model_name) generation_pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer) text = " خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس" output= generation_pipeline(text, num_beams=10, max_length=512, top_p=0.9, repetition_penalty = 3.0, no_repeat_ngram_size = 3)[0]["generated_text"] print(output)