import os import re import random from scipy.io.wavfile import write from scipy.io.wavfile import read import numpy as np import gradio as gr import yt_dlp import subprocess from pydub import AudioSegment from audio_separator.separator import Separator from lib.infer import infer_audio import edge_tts import tempfile import anyio from pathlib import Path from lib.language_tts import language_dict import os import zipfile import shutil import urllib.request import gdown import subprocess import time from argparse import ArgumentParser from download_model import download_online_model main_dir = Path().resolve() os.chdir(main_dir) models_dir = main_dir / "rvc_models" def extract_zip(extraction_folder, zip_name): os.makedirs(extraction_folder) with zipfile.ZipFile(zip_name, 'r') as zip_ref: zip_ref.extractall(extraction_folder) os.remove(zip_name) index_filepath, model_filepath = None, None for root, dirs, files in os.walk(extraction_folder): for name in files: if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100: index_filepath = os.path.join(root, name) if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40: model_filepath = os.path.join(root, name) if not model_filepath: raise Exception(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.') # move model and index file to extraction folder os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath))) if index_filepath: os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath))) # remove any unnecessary nested folders for filepath in os.listdir(extraction_folder): if os.path.isdir(os.path.join(extraction_folder, filepath)): shutil.rmtree(os.path.join(extraction_folder, filepath)) def download_online_model(url, dir_name, models_dir='./rvc_models'): try: print(f'[~] Downloading voice model with name {dir_name}...') zip_name = url.split('/')[-1] extraction_folder = os.path.join(models_dir, dir_name) if os.path.exists(extraction_folder): return f'[!] Voice model directory {dir_name} already exists! Choose a different name for your voice model.' # Download from pixeldrain if 'pixeldrain.com' in url: url = f'https://pixeldrain.com/api/file/{zip_name}' urllib.request.urlretrieve(url, zip_name) # Download from Google Drive elif 'drive.google.com' in url: zip_name = dir_name + ".zip" gdown.download(url, output=zip_name, use_cookies=True, quiet=True) else: # General URL download urllib.request.urlretrieve(url, zip_name) print(f'[~] Extracting zip file...') extract_zip(extraction_folder, zip_name) print(f'[+] {dir_name} Model successfully downloaded!') # Return success message after successful download return f"[+] {dir_name} Model successfully downloaded!" except Exception as e: # Return the error message instead of raising an exception return f'[!] Error: {str(e)}'