import os import shutil import gc import torch from multiprocessing import cpu_count from lib.modules import VC from lib.split_audio import split_silence_nonsilent, adjust_audio_lengths, combine_silence_nonsilent class Configs: def __init__(self, device, is_half): self.device = device self.is_half = is_half self.n_cpu = 0 self.gpu_name = None self.gpu_mem = None self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() def device_config(self) -> tuple: if torch.cuda.is_available(): i_device = int(self.device.split(":")[-1]) self.gpu_name = torch.cuda.get_device_name(i_device) #if ( # ("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) # or "P40" in self.gpu_name.upper() # or "1060" in self.gpu_name # or "1070" in self.gpu_name # or "1080" in self.gpu_name # ): # print("16 series/10 series P40 forced single precision") # self.is_half = False # for config_file in ["32k.json", "40k.json", "48k.json"]: # with open(BASE_DIR / "src" / "configs" / config_file, "r") as f: # strr = f.read().replace("true", "false") # with open(BASE_DIR / "src" / "configs" / config_file, "w") as f: # f.write(strr) # with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f: # strr = f.read().replace("3.7", "3.0") # with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f: # f.write(strr) # else: # self.gpu_name = None # self.gpu_mem = int( # torch.cuda.get_device_properties(i_device).total_memory # / 1024 # / 1024 # / 1024 # + 0.4 # ) # if self.gpu_mem <= 4: # with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f: # strr = f.read().replace("3.7", "3.0") # with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f: # f.write(strr) elif torch.backends.mps.is_available(): print("No supported N-card found, use MPS for inference") self.device = "mps" else: print("No supported N-card found, use CPU for inference") self.device = "cpu" if self.n_cpu == 0: self.n_cpu = cpu_count() if self.is_half: # 6G memory config x_pad = 3 x_query = 10 x_center = 60 x_max = 65 else: # 5G memory config x_pad = 1 x_query = 6 x_center = 38 x_max = 41 if self.gpu_mem != None and self.gpu_mem <= 4: x_pad = 1 x_query = 5 x_center = 30 x_max = 32 return x_pad, x_query, x_center, x_max def get_model(voice_model): model_dir = os.path.join(os.getcwd(), "models", voice_model) model_filename, index_filename = None, None for file in os.listdir(model_dir): ext = os.path.splitext(file)[1] if ext == '.pth': model_filename = file if ext == '.index': index_filename = file if model_filename is None: print(f'No model file exists in {models_dir}.') return None, None return os.path.join(model_dir, model_filename), os.path.join(model_dir, index_filename) if index_filename else '' def infer_audio( model_name, audio_path, f0_change=0, f0_method="rmvpe+", min_pitch="50", max_pitch="1100", crepe_hop_length=128, index_rate=0.75, filter_radius=3, rms_mix_rate=0.25, protect=0.33, split_infer=False, min_silence=500, silence_threshold=-50, seek_step=1, keep_silence=100, do_formant=False, quefrency=0, timbre=1, f0_autotune=False, audio_format="wav", resample_sr=0, hubert_model_path="assets/hubert/hubert_base.pt", rmvpe_model_path="assets/rmvpe/rmvpe.pt", fcpe_model_path="assets/fcpe/fcpe.pt" ): os.environ["rmvpe_model_path"] = rmvpe_model_path os.environ["fcpe_model_path"] = fcpe_model_path configs = Configs('cuda:0', True) vc = VC(configs) pth_path, index_path = get_model(model_name) vc_data = vc.get_vc(pth_path, protect, 0.5) if split_infer: inferred_files = [] temp_dir = os.path.join(os.getcwd(), "seperate", "temp") os.makedirs(temp_dir, exist_ok=True) print("Splitting audio to silence and nonsilent segments.") silence_files, nonsilent_files = split_silence_nonsilent(audio_path, min_silence, silence_threshold, seek_step, keep_silence) print(f"Total silence segments: {len(silence_files)}.\nTotal nonsilent segments: {len(nonsilent_files)}.") for i, nonsilent_file in enumerate(nonsilent_files): print(f"Inferring nonsilent audio {i+1}") inference_info, audio_data, output_path = vc.vc_single( 0, nonsilent_file, f0_change, f0_method, index_path, index_path, index_rate, filter_radius, resample_sr, rms_mix_rate, protect, audio_format, crepe_hop_length, do_formant, quefrency, timbre, min_pitch, max_pitch, f0_autotune, hubert_model_path ) if inference_info[0] == "Success.": print("Inference ran successfully.") print(inference_info[1]) print("Times:\nnpy: %.2fs f0: %.2fs infer: %.2fs\nTotal time: %.2fs" % (*inference_info[2],)) else: print(f"An error occurred while processing.\n{inference_info[0]}") return None inferred_files.append(output_path) print("Adjusting inferred audio lengths.") adjusted_inferred_files = adjust_audio_lengths(nonsilent_files, inferred_files) print("Combining silence and inferred audios.") output_count = 1 while True: output_path = os.path.join(os.getcwd(), "output", f"{os.path.splitext(os.path.basename(audio_path))[0]}{model_name}{f0_method.capitalize()}_{output_count}.{audio_format}") if not os.path.exists(output_path): break output_count += 1 output_path = combine_silence_nonsilent(silence_files, adjusted_inferred_files, keep_silence, output_path) [shutil.move(inferred_file, temp_dir) for inferred_file in inferred_files] shutil.rmtree(temp_dir) else: inference_info, audio_data, output_path = vc.vc_single( 0, audio_path, f0_change, f0_method, index_path, index_path, index_rate, filter_radius, resample_sr, rms_mix_rate, protect, audio_format, crepe_hop_length, do_formant, quefrency, timbre, min_pitch, max_pitch, f0_autotune, hubert_model_path ) if inference_info[0] == "Success.": print("Inference ran successfully.") print(inference_info[1]) print("Times:\nnpy: %.2fs f0: %.2fs infer: %.2fs\nTotal time: %.2fs" % (*inference_info[2],)) else: print(f"An error occurred while processing.\n{inference_info[0]}") del configs, vc gc.collect() return inference_info[0] del configs, vc gc.collect() return output_path