--- license: apache-2.0 tags: - moe - merge - mergekit - lazymergekit - MediaTek-Research/Breeze-7B-Instruct-v0.1 - augmxnt/shisa-7b-v1 - beomi/OPEN-SOLAR-KO-10.7B language: - zh - ja - ko - tw --- # EastAsia-4x7B-Moe-experiment EastAsia-4x7B-Moe-experiment is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [MediaTek-Research/Breeze-7B-Instruct-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1) * [augmxnt/shisa-7b-v1](https://huggingface.co/augmxnt/shisa-7b-v1) * [beomi/OPEN-SOLAR-KO-10.7B](https://huggingface.co/beomi/OPEN-SOLAR-KO-10.7B) ## 🧩 Configuration ```yaml gate_mode: hidden dtype: bfloat16 base_model: mlabonne/Marcoro14-7B-slerp experts: - source_model: MediaTek-Research/Breeze-7B-Instruct-v0.1 positive_prompts: - "翻譯" - source_model: augmxnt/shisa-7b-v1 positive_prompts: - "翻訳" - source_model: beomi/OPEN-SOLAR-KO-10.7B positive_prompts: - "번역" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Heng666/EastAsia-4x7B-Moe-experiment" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```