import tensorflow as tf import numpy as np # Function to tokenize input data def tokenize_input(data): tokenizer = tf.keras.preprocessing.text.Tokenizer() tokenizer.fit_on_texts(data) vocab_size = len(tokenizer.word_index) + 1 input_seq = tokenizer.texts_to_sequences(data) max_len = max([len(x) for x in input_seq]) input_seq = tf.keras.preprocessing.sequence.pad_sequences(input_seq, maxlen=max_len, padding='post') return tokenizer, input_seq, max_len, vocab_size # Function to define the neural network model def define_model(vocab_size, max_len): model = tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size, 16), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(16, activation='relu'), tf.keras.layers.Dense(max_len, activation='softmax') ]) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model # Function to train the neural network def train_model(model, input_seq, output, epochs=10): model.fit(input_seq, output, epochs=epochs, verbose=1) return model # Function to test the model on new input def test_model(model, test_data, tokenizer, max_len): test_seq = tokenizer.texts_to_sequences(test_data) test_seq = tf.keras.preprocessing.sequence.pad_sequences(test_seq, maxlen=max_len, padding='post') predictions = model.predict(test_seq) return predictions # Define the input and output data data = np.array(['create a python script', 'build a program', 'generate a code']) output = np.array([['create', 'python', 'script'], ['build', 'program'], ['generate', 'code']]) # Tokenize the input data tokenizer, input_seq, max_len, vocab_size = tokenize_input(data) # Define the neural network model model = define_model(vocab_size, max_len) # Train the neural network model model = train_model(model, input_seq, output) # Define a function to generate a response based on the predicted output def generate_response(predictions, tokenizer): output = [tokenizer.index_word[i] for i in np.argmax(predictions, axis=1)] if 'create' in output and 'python' in output and 'script' in output: return 'Sure, I can help you with that! What kind of script would you like to create?' elif 'build' in output and 'program' in output: return 'Of course! What programming language would you like to use for your program?' elif 'generate' in output and 'code' in output: return 'Certainly! What kind of code do you need generated?' else: return "I'm sorry, I didn't understand your request. Can you please rephrase it?" # Implement the chatbot print("Hi, I'm BootLeggerAI, a chatbot that can help you with your programming needs! What can I assist you with today?") while True: user_input = input("Please enter your request: ") test_data = np.array([user_input]) predictions = test_model(model, test_data, tokenizer, max_len) response = generate_response(predictions, tokenizer) print(response)