Upload inference.py
Browse files- inference.py +36 -0
inference.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import torch
|
3 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
4 |
+
from transformers import WhisperTokenizer
|
5 |
+
import torchaudio
|
6 |
+
|
7 |
+
|
8 |
+
def transcribe_audio(files_dir_path):
|
9 |
+
"""
|
10 |
+
Transcribe an audio file using the Whisper model.
|
11 |
+
Args:
|
12 |
+
files_dir_path (str): The path to the audio files directory.
|
13 |
+
"""
|
14 |
+
for file_path in glob.glob(files_dir_path + '/*.wav'):
|
15 |
+
audio_input, samplerate = torchaudio.load(file_path)
|
16 |
+
inputs = processor(audio_input.squeeze(), return_tensors="pt", sampling_rate=samplerate)
|
17 |
+
with torch.no_grad():
|
18 |
+
predicted_ids = model.generate(inputs["input_features"].to(device))
|
19 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
20 |
+
print(transcription[0])
|
21 |
+
|
22 |
+
|
23 |
+
if __name__ == '__main__':
|
24 |
+
wav_dir_path = '/home/user/Desktop/arb_stt/test/'
|
25 |
+
checkpoint_path = '/home/user/Desktop/arb_stt/best_models/medium/checkpoint-3300'
|
26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
+
|
28 |
+
# Initialize model and processor
|
29 |
+
tokenizer = WhisperTokenizer.from_pretrained(f'{checkpoint_path}/tokenizer', language="Arabic", task="transcribe")
|
30 |
+
processor = WhisperProcessor.from_pretrained(f'{checkpoint_path}/processor', language="Arabic", task="transcribe")
|
31 |
+
model = WhisperForConditionalGeneration.from_pretrained(checkpoint_path).to(device)
|
32 |
+
model.generation_config.language = "arabic"
|
33 |
+
model.generation_config.task = "transcribe"
|
34 |
+
model.eval()
|
35 |
+
|
36 |
+
transcribe_audio(wav_dir_path)
|