--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.782608695652174 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.2172 - Accuracy: 0.7826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1308 | 1.0 | 25 | 2.1309 | 0.0870 | | 1.9034 | 2.0 | 50 | 1.9650 | 0.3478 | | 1.6085 | 3.0 | 75 | 1.7543 | 0.5217 | | 1.4083 | 4.0 | 100 | 1.6225 | 0.5217 | | 1.4712 | 5.0 | 125 | 1.4741 | 0.6957 | | 1.1667 | 6.0 | 150 | 1.3947 | 0.6087 | | 1.0986 | 7.0 | 175 | 1.3320 | 0.7391 | | 1.0781 | 8.0 | 200 | 1.2441 | 0.7391 | | 0.96 | 9.0 | 225 | 1.2146 | 0.7826 | | 0.9224 | 10.0 | 250 | 1.2172 | 0.7826 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0