--- library_name: transformers license: apache-2.0 base_model: MariaK/distilhubert-finetuned-gtzan-v2 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-v2-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.9555555555555556 --- # distilhubert-finetuned-gtzan-v2-finetuned-gtzan This model is a fine-tuned version of [MariaK/distilhubert-finetuned-gtzan-v2](https://huggingface.co/MariaK/distilhubert-finetuned-gtzan-v2) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.1561 - Accuracy: 0.9556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1145 | 1.0 | 51 | 0.1565 | 0.9556 | | 0.0774 | 2.0 | 102 | 0.1561 | 0.9556 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3