--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: banglabert-bert-finetuned-ner results: [] --- # banglabert-bert-finetuned-ner This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9526 - Precision: 0.0143 - Recall: 0.0769 - F1: 0.0241 - Accuracy: 0.0143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 1 | 2.0085 | 0.0143 | 0.0769 | 0.0241 | 0.0143 | | No log | 2.0 | 2 | 1.9711 | 0.0143 | 0.0769 | 0.0241 | 0.0143 | | No log | 3.0 | 3 | 1.9526 | 0.0143 | 0.0769 | 0.0241 | 0.0143 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1