--- license: apache-2.0 base_model: microsoft/swin-large-patch4-window12-384-in22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: microsoft/swin-large-patch4-window12-384-in22k results: - task: name: Image Classification type: image-classification dataset: name: NIH-Xray type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.49376114081996436 --- # microsoft/swin-large-patch4-window12-384-in22k This model is a fine-tuned version of [microsoft/swin-large-patch4-window12-384-in22k](https://huggingface.co/microsoft/swin-large-patch4-window12-384-in22k) on the NIH-Xray dataset. It achieves the following results on the evaluation set: - Loss: 3.7711 - Accuracy: 0.4938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.8318 | 0.9984 | 315 | 1.7651 | 0.5437 | | 1.6067 | 2.0 | 631 | 1.6393 | 0.5455 | | 1.406 | 2.9984 | 946 | 1.6472 | 0.5490 | | 1.3983 | 4.0 | 1262 | 1.7344 | 0.5455 | | 0.7272 | 4.9984 | 1577 | 2.1283 | 0.5258 | | 0.3975 | 6.0 | 1893 | 2.5229 | 0.5134 | | 0.2648 | 6.9984 | 2208 | 3.0333 | 0.5080 | | 0.1232 | 8.0 | 2524 | 3.4626 | 0.5241 | | 0.0873 | 8.9984 | 2839 | 3.6219 | 0.5027 | | 0.0554 | 9.9842 | 3150 | 3.7711 | 0.4938 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1