from dataclasses import dataclass, fields, asdict import json import torch import torch.nn as nn import torch.nn.functional as F from mamba import MambaConfig #Mamba, MambaConfig, RMSNorm from mamba_ssm import MambaLMHeadModel """ Encapsulates a Mamba model as language model. It has an embedding layer, and a LM head which maps the model output to logits. """ # TODO generate function : batch size != 1 ? (for now B=1) # TODO generate function : top-p sampling @dataclass class MambaLMConfig(MambaConfig): vocab_size: int = 32000 pad_vocab_size_multiple: int = 8 def __post_init__(self): super().__post_init__() #if self.vocab_size % self.pad_vocab_size_multiple != 0: # self.vocab_size += (self.pad_vocab_size_multiple - self.vocab_size % self.pad_vocab_size_multiple) def to_mamba_config(self) -> MambaConfig: mamba_config_fields = {field.name for field in fields(MambaConfig)} filtered_dict = {k: v for k, v in asdict(self).items() if k in mamba_config_fields} return MambaConfig(**filtered_dict) # adapted from https://github.com/johnma2006/mamba-minimal def from_pretrained(name: str): """ Returns a model loaded with pretrained weights pulled from HuggingFace. Args: name: As of now, supports * 'state-spaces/mamba-2.8b-slimpj' * 'state-spaces/mamba-2.8b' * 'state-spaces/mamba-1.4b' * 'state-spaces/mamba-790m' * 'state-spaces/mamba-370m' * 'state-spaces/mamba-130m' Returns: model: a Mamba model configured with the proper parameters and initialized with the proper weights """ from transformers.utils import WEIGHTS_NAME, CONFIG_NAME from transformers.utils.hub import cached_file def load_config_hf(model_name): resolved_archive_file = cached_file(model_name, CONFIG_NAME, _raise_exceptions_for_missing_entries=False) return json.load(open(resolved_archive_file)) def load_state_dict_hf(model_name): resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False) return torch.load(resolved_archive_file, weights_only=True, map_location='cpu', mmap=True) # copy config data config_data = load_config_hf(name) config = MambaLMConfig(d_model=config_data['d_model'], n_layers=config_data['n_layer'], vocab_size=config_data['vocab_size']) model = MambaLMHeadModel(config) # copy weights state_dict = load_state_dict_hf(name) new_state_dict = {} for key in state_dict: if key == 'backbone.embedding.weight' or key == 'backbone.norm_f.weight': new_key = key.replace('backbone.', '') else: new_key = key.replace('backbone', 'mamba') new_state_dict[new_key] = state_dict[key] model.load_state_dict(new_state_dict) return model class MambaLM(nn.Module): def __init__(self, lm_config: MambaLMConfig): super().__init__() self.lm_config = lm_config self.config = lm_config#.to_mamba_config() self.embedding = nn.Embedding(self.lm_config.vocab_size, self.config.d_model) self.mamba = Mamba(self.config) self.norm_f = RMSNorm(self.config.d_model) self.lm_head = nn.Linear(self.config.d_model, self.lm_config.vocab_size, bias=False) self.lm_head.weight = self.embedding.weight def forward(self, tokens): # tokens : (B, L) # logits : (B, L, vocab_size) x = self.embedding(tokens) x = self.mamba(x) x = self.norm_f(x) logits = self.lm_head(x) return logits def step(self, token, caches): # token : (B) # caches : [cache(layer) for all layers], cache : (h, inputs) # logits : (B, vocab_size) # caches : [cache(layer) for all layers], cache : (h, inputs) x = self.embedding(token) x, caches = self.mamba.step(x, caches) x = self.norm_f(x) logits = self.lm_head(x) return logits, caches # TODO temperature # TODO process prompt in parallel, and pass in sequential mode when prompt is finished ? def generate(self, tokenizer, prompt: str, num_tokens: int = 50, sample: bool = True, top_k: int = 40): self.eval() input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(next(self.parameters()).device) # (1, num_tokens) # caches is a list of cache, one per layer # cache is composed of : the hidden state, and the last d_conv-1 inputs # the hidden state because the update is like an RNN # the last d_conv-1 inputs because they are used in a 1d convolution (usually d_conv=4 so this is not large) caches = [(None, torch.zeros(1, self.config.d_inner, self.config.d_conv-1, device=input_ids.device)) for _ in range(self.config.n_layers)] for i in range(input_ids.size(1) + num_tokens - 1): with torch.no_grad(): # forward the new output, get new cache next_token_logits, caches = self.step(input_ids[:, i], caches) # (1, vocab_size), caches # sample (no sampling when the prompt is being processed) if i+1 >= input_ids.size(1): probs = F.softmax(next_token_logits, dim=-1) # (1, vocab_size) if top_k is not None: values, _ = torch.topk(probs, k=top_k) # (1, k) ordered from lowest to biggest probs[probs < values[:, -1, None]] = 0 probs = probs / probs.sum(axis=1, keepdims=True) if sample: next_token = torch.multinomial(probs, num_samples=1).squeeze(1) # (1) else: next_token = torch.argmax(probs, dim=-1) # (1) input_ids = torch.cat([input_ids, next_token.unsqueeze(1)], dim=1) output = [tokenizer.decode(output.tolist()) for output in input_ids][0] self.train() return output