import math from dataclasses import dataclass from typing import Union import torch import torch.nn as nn import torch.nn.functional as F from pscan import pscan """ This file closely follows the mamba_simple.py from the official Mamba implementation, and the mamba-minimal by @johnma2006. The major differences are : -the convolution is done with torch.nn.Conv1d -the selective scan is done in PyTorch A sequential version of the selective scan is also available for comparison. - A Mamba model is composed of several layers, which are ResidualBlock. - A ResidualBlock is composed of a MambaBlock, a normalization, and a residual connection : ResidualBlock(x) = mamba(norm(x)) + x - This leaves us with the MambaBlock : its input x is (B, L, D) and its outputs y is also (B, L, D) (B=batch size, L=seq len, D=model dim). First, we expand x into (B, L, 2*ED) (where E is usually 2) and split it into x and z, each (B, L, ED). Then, we apply the short 1d conv to x, followed by an activation function (silu), then the SSM. We then multiply it by silu(z). See Figure 3 of the paper (page 8) for a visual representation of a MambaBlock. """ @dataclass class MambaConfig: d_model: int # D n_layers: int dt_rank: Union[int, str] = 'auto' d_state: int = 16 # N in paper/comments expand_factor: int = 2 # E in paper/comments d_conv: int = 4 dt_min: float = 0.001 dt_max: float = 0.1 dt_init: str = "random" # "random" or "constant" dt_scale: float = 1.0 dt_init_floor = 1e-4 bias: bool = False conv_bias: bool = True pscan: bool = True # use parallel scan mode or sequential mode when training def __post_init__(self): self.d_inner = self.expand_factor * self.d_model # E*D = ED in comments if self.dt_rank == 'auto': self.dt_rank = math.ceil(self.d_model / 16) class Mamba(nn.Module): def __init__(self, config: MambaConfig): super().__init__() self.config = config self.layers = nn.ModuleList([ResidualBlock(config) for _ in range(config.n_layers)]) #self.norm_f = RMSNorm(config.d_model) def forward(self, x): # x : (B, L, D) # y : (B, L, D) for layer in self.layers: x = layer(x) #x = self.norm_f(x) return x def step(self, x, caches): # x : (B, L, D) # caches : [cache(layer) for all layers], cache : (h, inputs) # y : (B, L, D) # caches : [cache(layer) for all layers], cache : (h, inputs) for i, layer in enumerate(self.layers): x, caches[i] = layer.step(x, caches[i]) return x, caches class ResidualBlock(nn.Module): def __init__(self, config: MambaConfig): super().__init__() self.mixer = MambaBlock(config) self.norm = RMSNorm(config.d_model) def forward(self, x): # x : (B, L, D) # output : (B, L, D) output = self.mixer(self.norm(x)) + x return output def step(self, x, cache): # x : (B, D) # cache : (h, inputs) # h : (B, ED, N) # inputs: (B, ED, d_conv-1) # output : (B, D) # cache : (h, inputs) output, cache = self.mixer.step(self.norm(x), cache) output = output + x return output, cache class MambaBlock(nn.Module): def __init__(self, config: MambaConfig): super().__init__() self.config = config # projects block input from D to 2*ED (two branches) self.in_proj = nn.Linear(config.d_model, 2 * config.d_inner, bias=config.bias) self.conv1d = nn.Conv1d(in_channels=config.d_inner, out_channels=config.d_inner, kernel_size=config.d_conv, bias=config.conv_bias, groups=config.d_inner, padding=config.d_conv - 1) nn.init.kaiming_normal_(self.conv1d.weight, mode='fan_out', nonlinearity='leaky_relu') # projects x to input-dependent Δ, B, C self.x_proj = nn.Linear(config.d_inner, config.dt_rank + 2 * config.d_state, bias=False) # projects Δ from dt_rank to d_inner self.dt_proj = nn.Linear(config.dt_rank, config.d_inner, bias=True) # dt initialization # dt weights dt_init_std = config.dt_rank**-0.5 * config.dt_scale if config.dt_init == "constant": nn.init.constant_(self.dt_proj.weight, dt_init_std) elif config.dt_init == "random": nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std) else: raise NotImplementedError # dt bias dt = torch.exp( torch.rand(config.d_inner) * (math.log(config.dt_max) - math.log(config.dt_min)) + math.log(config.dt_min) ).clamp(min=config.dt_init_floor) inv_dt = dt + torch.log(-torch.expm1(-dt)) # inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 with torch.no_grad(): self.dt_proj.bias.copy_(inv_dt) #self.dt_proj.bias._no_reinit = True # initialization would set all Linear.bias to zero, need to mark this one as _no_reinit # todo : explain why removed # S4D real initialization A = torch.arange(1, config.d_state + 1, dtype=torch.float32).repeat(config.d_inner, 1) self.A_log = nn.Parameter(torch.log(A)) # why store A in log ? to keep A < 0 (cf -torch.exp(...)) ? for gradient stability ? self.D = nn.Parameter(torch.ones(config.d_inner)) # projects block output from ED back to D self.out_proj = nn.Linear(config.d_inner, config.d_model, bias=config.bias) def forward(self, x): # x : (B, L, D) # y : (B, L, D) _, L, _ = x.shape xz = self.in_proj(x) # (B, L, 2*ED) x, z = xz.chunk(2, dim=-1) # (B, L, ED), (B, L, ED) # x branch x = x.transpose(1, 2) # (B, ED, L) x = self.conv1d(x)[:, :, :L] # depthwise convolution over time, with a short filter x = x.transpose(1, 2) # (B, L, ED) x = F.silu(x) y = self.ssm(x) # z branch z = F.silu(z) output = y * z output = self.out_proj(output) # (B, L, D) return output def ssm(self, x): # x : (B, L, ED) # y : (B, L, ED) A = -torch.exp(self.A_log.float()) # (ED, N) D = self.D.float() # TODO remove .float() deltaBC = self.x_proj(x) # (B, L, dt_rank+2*N) delta, B, C = torch.split(deltaBC, [self.config.dt_rank, self.config.d_state, self.config.d_state], dim=-1) # (B, L, dt_rank), (B, L, N), (B, L, N) delta = F.softplus(self.dt_proj(delta)) # (B, L, ED) if self.config.pscan: y = self.selective_scan(x, delta, A, B, C, D) else: y = self.selective_scan_seq(x, delta, A, B, C, D) return y def selective_scan(self, x, delta, A, B, C, D): # x : (B, L, ED) # Δ : (B, L, ED) # A : (ED, N) # B : (B, L, N) # C : (B, L, N) # D : (ED) # y : (B, L, ED) deltaA = torch.exp(delta.unsqueeze(-1) * A) # (B, L, ED, N) deltaB = delta.unsqueeze(-1) * B.unsqueeze(2) # (B, L, ED, N) BX = deltaB * (x.unsqueeze(-1)) # (B, L, ED, N) hs = pscan(deltaA, BX) y = (hs @ C.unsqueeze(-1)).squeeze(3) # (B, L, ED, N) @ (B, L, N, 1) -> (B, L, ED, 1) y = y + D * x return y def selective_scan_seq(self, x, delta, A, B, C, D): # x : (B, L, ED) # Δ : (B, L, ED) # A : (ED, N) # B : (B, L, N) # C : (B, L, N) # D : (ED) # y : (B, L, ED) _, L, _ = x.shape deltaA = torch.exp(delta.unsqueeze(-1) * A) # (B, L, ED, N) deltaB = delta.unsqueeze(-1) * B.unsqueeze(2) # (B, L, ED, N) BX = deltaB * (x.unsqueeze(-1)) # (B, L, ED, N) h = torch.zeros(x.size(0), self.config.d_inner, self.config.d_state, device=deltaA.device) # (B, ED, N) hs = [] for t in range(0, L): h = deltaA[:, t] * h + BX[:, t] hs.append(h) hs = torch.stack(hs, dim=1) # (B, L, ED, N) y = (hs @ C.unsqueeze(-1)).squeeze(3) # (B, L, ED, N) @ (B, L, N, 1) -> (B, L, ED, 1) y = y + D * x return y # -------------------------- inference -------------------------- # """ Concerning auto-regressive inference The cool part of using Mamba : inference is constant wrt to sequence length We just have to keep in cache, for each layer, two things : - the hidden state h (which is (B, ED, N)), as you typically would when doing inference with a RNN - the last d_conv-1 inputs of the layer, to be able to compute the 1D conv which is a convolution over the time dimension (d_conv is fixed so this doesn't incur a growing cache as we progress on generating the sequence) (and d_conv is usually very small, like 4, so we just have to "remember" the last 3 inputs) Concretely, these two quantities are put inside a cache tuple, and are named h and inputs respectively. h is (B, ED, N), and inputs is (B, ED, d_conv-1) The MambaBlock.step() receives this cache, and, along with outputing the output, alos outputs the updated cache for the next call. The cache object is initialized as follows : (None, torch.zeros()). When h is None, the selective scan function detects it and start with h=0. The torch.zeros() isn't a problem (it's same as just feeding the input, because the conv1d is padded) As we need one such cache variable per layer, we store a caches object, which is simply a list of cache object. (See mamba_lm.py) """ def step(self, x, cache): # x : (B, D) # cache : (h, inputs) # h : (B, ED, N) # inputs : (B, ED, d_conv-1) # y : (B, D) # cache : (h, inputs) h, inputs = cache xz = self.in_proj(x) # (B, 2*ED) x, z = xz.chunk(2, dim=1) # (B, ED), (B, ED) # x branch x_cache = x.unsqueeze(2) x = self.conv1d(torch.cat([inputs, x_cache], dim=2))[:, :, self.config.d_conv-1] # (B, ED) x = F.silu(x) y, h = self.ssm_step(x, h) # z branch z = F.silu(z) output = y * z output = self.out_proj(output) # (B, D) # prepare cache for next call inputs = torch.cat([inputs[:, :, 1:], x_cache], dim=2) # (B, ED, d_conv-1) cache = (h, inputs) return output, cache def ssm_step(self, x, h): # x : (B, ED) # h : (B, ED, N) # y : (B, ED) # h : (B, ED, N) A = -torch.exp(self.A_log.float()) # (ED, N) # todo : ne pas le faire tout le temps, puisque c'est indépendant de la timestep D = self.D.float() # TODO remove .float() deltaBC = self.x_proj(x) # (B, dt_rank+2*N) delta, B, C = torch.split(deltaBC, [self.config.dt_rank, self.config.d_state, self.config.d_state], dim=-1) # (B, dt_rank), (B, N), (B, N) delta = F.softplus(self.dt_proj(delta)) # (B, ED) deltaA = torch.exp(delta.unsqueeze(-1) * A) # (B, ED, N) deltaB = delta.unsqueeze(-1) * B.unsqueeze(1) # (B, ED, N) BX = deltaB * (x.unsqueeze(-1)) # (B, ED, N) if h is None: h = torch.zeros(x.size(0), self.config.d_inner, self.config.d_state, device=deltaA.device) # (B, ED, N) h = deltaA * h + BX # (B, ED, N) y = (h @ C.unsqueeze(-1)).squeeze(2) # (B, ED, N) @ (B, N, 1) -> (B, ED, 1) y = y + D * x # todo : pq h.squeeze(1) ?? return y, h.squeeze(1) # taken straight from https://github.com/johnma2006/mamba-minimal/blob/master/model.py class RMSNorm(nn.Module): def __init__(self, d_model: int, eps: float = 1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(d_model)) def forward(self, x): output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight return output